Thursday, August 7, 2008

reStore Adyar Centre

reStore Adyar Centre
No. 27 /Old 10, 2nd Main Rd., Kasturba Nagar, Adyar, Chennai-20.
(opposite the clinic of Dr. G Ramesh, Opthalmologist)

We are very pleased to announce that
starting on August 8th 2008
our centre at Kasturba Nagar will be open
Monday to Friday, 5 PM to 8 PM.
Our Adyar Centre will stock all of our Organic Dry Provisions -- Rices, Dals, Millets, Flours, Oils, Spices etc., as well as other eco-friendly products such as natural dyed textiles, natural soaps and a range of bags & mats.

We invite you to join us for organic sakkarai pongal and sundal at the inauguration of the centre on Adi-vellikizhamai, Friday August 8th 2008, 5 to 8 PM.

Looking forward to your participation
--- the reStore collective
*************************************************************************************
Please note that our Saturday Bazaars will continue as usual at New No. 4 MGR Road, Kalakshetra Colony, Chennai 90.
The next bazaar date is Saturday Aug 9th, 4 to 7 PM.

Friday, August 1, 2008

Econut Contact Information

Econut Health Food Shop E-34, 2nd Avenue, Besant Nagar, Tamil Nadu (600090) phone: 044-24919592

Thursday, July 31, 2008

Saltpetre application

Apply as a foliar spray. Dilute in 1gm:50ml ratio.
i.e. 200 gm in 10 litres of water.

navara cultivation -- advice from Mr. M.C. Narayanan Kutty

Navara can be grown preferably as an upland crop. If you are planning to raise it in wet land conditions, please ensure that water is controlled. It can tolerate dry conditions. Wet sowing of germinated seeds or dry sowing is preferred as the crop has a duration of less than 90 days. If SRI system of transplanting is adopted give 25 cm between rows and plants. Here 7-8 day old seedlings can be planted. Organic manures like cow dung, compost etc can be used. Chemical feriliser application is not generally recommended.Prefer season with less rainfall. I think late august could be ideal in your place.


SRI, THE SYSTEM OF RICE INTENSIFICATION: LESS CAN BE MORE



SRI, THE SYSTEM OF RICE INTENSIFICATION: LESS CAN BE MORE
Date: Monday, June 14 @ 10:00:45 EST
Topic: Appropriate Technology


By Dawn Berkelaar
 
We recently learned about a method of raising rice that produces substantially higher yields with the planting of far fewer seedlings and the use of fewer inputs than either traditional methods (i.e., water) or more "modern" methods (chemical fertilizer or agrochemicals).  It involves using different practices for plant, soil, water and nutrient management.  This system of rice intensification has been successfully used in a number of countries (although so far mostly in Madagascar). 

What is SRI?

SRI involves the use of certain management practices which together provide better growing conditions for rice plants, particularly in the root zone, than those for plants grown under traditional practices.  SRI was developed in Madagascar in the early 1980s by Father Henri de Laulaníe, a Jesuit priest who spent over 30 years in that country working with farmers.  In 1990, Association Tefy Saina (ATS) was formed as a Malagasy NGO to promote SRI.  Four years later, the Cornell International Institute for Food, Agriculture and Development (CIIFAD), began cooperating with Tefy Saina to introduce SRI around the Ranomafana National Park in eastern Madagascar, supported by the U.S. Agency for International Development.  It has since been tested in China, India, Indonesia, the Philippines, Sri Lanka and Bangladesh with positive results. 
 
The results with SRI methods are remarkable (see Table 1).  In Madagascar, on some of the poorest soil to be found and where yields of 2 tons/hectare were the norm, farmers using SRI are now averaging over 8 tons/hectare, with some getting 10 to 15 tons/hectare.  A few farmers have even gotten over 20 tons/hectare.  In other parts of the country, over a five-year period, hundreds of farmers averaged 8 to 9 tons/hectare.
 
SRI methods have at least doubled the yields of any variety of rice that has been tried.  No external inputs are necessary for a farmer to benefit from SRI.  The methods should work with any seeds that are now being used.  However, you do need to have an open mind about new methods and a willingness to experiment.  With SRI, plants are treated as the living organisms that they are, rather than as machines to be manipulated.  The potential within plants is drawn out by giving them the best possible conditions for their growth.
 
At first, the practices that constitute SRI seem somewhat counterintuitive.  SRI challenges assumptions and practices that have been in place for hundreds, even thousands of years.  Most rice farmers plant fairly mature seedlings (20-30 days old), in clumps, fairly close together, with standing water maintained on the field for as much of the season as possible.  Why?  These practices seem to reduce the risk of crop failure.  It seems logical that more mature plants should survive better; that planting in clumps will ensure that some plants will survive transplanting; that planting more seedlings should result in more yield; and that planting in standing water means the plants will never lack water and weeds will have little opportunity to grow. 
 
Despite this reasoning, farmers have not found that using SRI practices puts their crops at any more risk than do traditional methods.  Four "novel" practices in particular are key in SRI:
 
1. Seedlings are transplanted early.  Rice seedlings are transplanted when only the first two leaves have emerged from the initial tiller or stalk, usually when they are between 8 and 15 days old (see Figure 1).  Seedlings should be grown in a nursery in which the soil is kept moist but not flooded.  When transplanting seedlings, carefully remove them from the nursery bed with a trowel, and keep them moist.  Do not let them dry out.  The seed sac (the remains of the germinated seed) should be kept attached to the infant root, because it is an important energy source for the young seedling.  Seedlings should be transplanted as soon as possible after being removed from the nursery--within half an hour and preferably within 15 minutes.  When placing seedlings in the field, carefully lay the roots sideways in the soil with a horizontal motion, so that the root tip is not inadvertently left pointing upward (this happens when seedlings are plunged straight downward into the soil).  The root tip needs to be able to grow downward.  Careful transplanting of seedlings when they are very young reduces shock and increases the plants' ability to produce numerous tillers and roots during their vegetative growth stage.  Grains of rice are eventually produced on the panicles (i.e. the "ears" of grain above the stalk, produced by fertile tillers).  More tillers result in more panicles, and with SRI methods, more grains are produced on each panicle.
 
 
 
Figure 1: With SRI, seedlings are planted when they are 8 to 15 days old, when there are just two leaves. The plants at the top are 8 days old. With traditional methods, seedlings are planted when they are several weeks old. The seedlings shown at the bottom are 31 days old. Photos by Joshua Harber.
 
2.  Seedlings are planted singly rather than in clumps.  Seedlings are transplanted singly rather than in clumps of two or three or more.  This means that individual plants have room to spread and to send down roots.  They do not compete as much with other rice plants for space, for light, or for nutrients in the soil.  Root systems become altogether different when plants are set out singly, and when the next practice is followed:
 
3.  Wide spacing.  Rather than in tight rows, seedlings are planted in a square pattern with plenty of space between them in all directions.  Usually they are spaced at least 25 cm x 25 cm (see Figure 2).  Feel free to experiment with the spacing, because the optimum spacing (producing the highest number of fertile tillers per square meter) depends on soil structure, soil nutrients, temperature, moisture and other conditions.  The general rule is that plants should have plenty of room to grow.  If you also use the other practices mentioned here, seldom will the best spacing be closer than 20 cm x 20 cm.  The maximum yields have been obtained on good soil with 50 x 50 cm spacing, just four plants per square meter. 

Figure 2: SRI seedlings (above) are very widely spaced compared with seedlings planted with traditional methods (below). These diagrams show seedlings at approximately one month of age, when seedlings are roughly the same size. However, SRI seedlings, having been transplanted several weeks earlier, by this time have already undergone transplant shock and may have begun to tiller. Sketches by Christi Sobel
 
To space the plants carefully (which makes weeding easier), you can place sticks at appropriate intervals (e.g. every 25 cm) along the edge of the field, then stretch strings between them.  The strings should be marked at the same intervals so that you can plant in a square pattern. Leaving wide spaces between each plant ensures that roots have adequate room to grow, and the plants will be exposed to more sunlight, air and nutrients.  The result is more root growth (and thus better nutrient uptake) and more tillering.  The square pattern also facilitates weeding (see number 6, below). 
 
When farmers are more experienced, they can save time by just marking cross-hatched lines on the field surface with rakes or other devices.  Notice that SRI uses a much lower seeding rate than do traditional methods; one evaluation of SRI revealed that the rate of seed application was only 7 kg/ha, compared to the traditional seeding rate of 107 kg/ha!  Yet yields were doubled because each plant produced so much more grain.
 
4.  Moist but unflooded soil conditions.  Rice has traditionally been grown submerged in water.  Clearly rice is able to tolerate standing water.  However, standing water creates hypoxic soil conditions (lacking in oxygen) for the roots and hardly seems to be ideal!  Rice roots have been shown to degenerate under flooded conditions, losing ¾ of their roots by the time the plants reach the flowering stage.  This die-back of roots under flooded conditions has been called "senescence," implying that it is a natural process.  But it actually represents suffocation, which impedes plant functioning and growth.
 
With SRI, farmers use less than half of the water they would use if they kept their paddies constantly flooded.  Soil is kept moist but not saturated during the vegetative growth period, ensuring that more oxygen is available in the soil for the roots.  Occasionally (perhaps once a week) the soil should be allowed to dry to the point of cracking.  This will allow oxygen to enter the soil and will also induce the roots to grow and "search" for water.  After all, when the soil is flooded, roots have no need to grow and spread, and they lack enough oxygen to grow vigorously. 
 
Unflooded conditions, combined with mechanical weeding, result in more air in the soil, and greater root growth means that the rest of the plant will have access to more nutrients.  When soil is saturated, air pockets (known as aerenchyma) form in the roots of submerged plants in order to transport oxygen.  These air pockets take up to 30-40% of the roots' cortex and probably impede the transport of nutrients from the roots to the rest of the plant. More water may be applied before weeding to make the process of weeding easier (see 5, below).  Otherwise, water is best applied in the evening (if there has been no rain during the day), and any water remaining on the surface is drained in the morning.  This leaves the field open to both air and warmth during the day; flooded fields will reflect a good part of the solar radiation reaching them, and absorb less of the warmth which helps plants grow.  With SRI, unflooded conditions are only maintained during the period of vegetative growth.  Later, after flowering, 1-3 centimeters of water are kept standing on the field, as is done with traditional practices.  The field is drained completely 25 days before harvesting. 
 
In addition to these four principal practices, two other practices are extremely beneficial when using SRI.  These practices are not controversial and have long been recognized as valuable for crops.
 
5. Weeding.  This can be done by hand or with a simple mechanical tool (see Figure 3).  Farmers in Madagascar find it advantageous, both in terms of reducing labor and of increasing yield, to use a mechanical hand weeder developed by the International Rice Research Institute in the 1960s.  It has vertical rotating toothed wheels that churn up the soil as the weeder is pushed down and across the alleys formed by the square formation of planting.  Weeding is labor-intensive—it may take up to 25 days of labor to weed one hectare—but the increase in yield means that the work will more than pay for itself. 

Figure 3: One example of a mechanical weeder with vertical rotating toothed wheels, often used with SRI. Plans are available at ECHO for this weeder and for a larger weeder with five wheels. Sketches of weeders by Paya deMarken, Peace Corps Volunteer in Madagascar.
 
The first weeding should be done ten to twelve days after transplanting, and the second weeding within fourteen days.  At least two or three weedings are recommended, but another one or two can significantly increase the yield, adding one to two tons per hectare.  Probably more important than removing weeds, this practice of churning the soil seems to improve soil structure and increase aeration of the soil.
 
Organic inputs.  SRI was developed initially with chemical fertilizers to increase yield on the very poor soils of Madagascar.  But when subsidies were removed in the later 1980s, recommendations switched to use of compost, and even better results were observed.  The compost can be made from any biomass (e.g. rice straw, plant trimmings and other plant material), with some animal manure added if available.  Banana leaves can add more potassium, cuttings from leguminous shrubs add more nitrogen, and other plants such as Tithonia and Afromomum angustifolium, may be high in phosphorous.  Compost adds nutrients to the soil slowly and can also contribute to a better soil structure.  It seems fairly intuitive that some form of nutrient input is necessary on poor soils if chemical fertilizer is not added.  With huge yields of rice being harvested, something needs to be returned to the soil!
 
 Why does SRI work?
 
The concept of synergy appears to help explain why SRI works so well.  In this context, synergy means that practices used in SRI interact in positive, reinforcing ways so that the whole is more than the total of its parts.  Each of the management practices used in SRI makes a positive difference in the yield, but the real potential of SRI is seen only when the practices are used together. 
 
When used together, SRI practices result in a rice plant structure that is different from what results when traditional practices are followed.  Rice plants under SRI have many more tillers, greater root development, and more grains per panicle.  In order to tiller, plants need to have enough root growth to support new growth above ground.  But roots require certain conditions of soil, water, nutrient, temperature and space for growth.  Roots also need energy from the photosynthesis that occurs in tillers and leaves above ground.  Thus the roots and shoots depend on each other.  In addition, when growing conditions are optimized, there is a positive relationship between the number of tillers per plant, the number of tillers that become fertile (panicles), and the number of grains per tiller. 
 
SRI fields will look terrible for a month or more after transplanting, because the plants are so thin and small and widely spaced.  In the first month, the plant is preparing to tiller.  During the second month, serious tillering begins.  In the third month, the field seems to "explode" with rapid tiller growth.  To understand why, you need to understand the concept of phyllochrons, a concept that applies to members of the grass family, including cereals like rice, wheat and barley. 
 
A phyllochron is not a thing.  It is the period of time between the emergence of one phytomer (a set of tiller, leaf and root which emerges from the base of the plant) and the emergence of the next (see Table 2).  The length of phyllochrons is determined particularly by temperature, but it is also affected by things like day length, humidity, soil quality, exposure to light and air, and nutrient availability. 
 
If conditions are good, phyllochrons in rice are five to seven days long, though they may be shorter at higher temperatures.  Under very good conditions, the vegetative growth phase of a rice plant may last as long as 12 phyllochrons before the plant begins initiating panicles and starts its reproductive phase (see Table 2).  This is possible when the rate of biological growth is speeded up, so that many growth intervals are completed before panicle initiation. 
 
Conversely, under poor conditions, phyllochrons last longer, and fewer of them will be completed before the flowering phase begins.  Here is the most important consideration:  only a few tillers are put out during the early phyllochrons (and none at all during the second and third phyllochrons), but during each successive phyllochron after the third one, each tiller already growing puts out a new tiller from its base (with a lag time of one phyllochron before this process starts) (see Table 2).  During the latter part of the vegetative growth period, with ideal growing conditions, the plant's production of tillers becomes exponential rather than additive.  (It corresponds to what is known as the Fibonacci series in biology.)  Instead of a "maximum period" of tiller production being reached some time before panicle initiation (PI), as happens with standard cultivation practices, with SRI both PI and the maximum production of tillers coincide.
 
This is why it is best to transplant seedlings during the second or third phyllochron, so as not to disrupt the rapid growth which begins in the fourth phyllochron.  Seedling roots are traumatized when they are exposed to the sun and dry out; when they are plunged into an airless environment; and when feeder roots, put out from the first root, are lost or damaged during late transplanting.  This trauma slows subsequent growth, and not as many phyllochrons are completed before PI.  Most current transplanting methods (and timing) set plant growth back by one or two weeks and also slow subsequent growth.  For maximum tillering, you want plants to complete as many phyllochrons as possible during their vegetative phase.  If seedlings are three or four weeks old when transplanted, the most important (late) phyllochrons when tiller growth is multiplied will never be reached.
 
Contrary to popular expectation, more tillering does not mean less panicle formation or grain filling.  With SRI, there is not a negative correlation between the number of tillers produced and the number of grains produced by each fertile tiller.  All yield components—tillering, panicle formation, and grain filling—can increase under favorable growing conditions.

This sounds too good to be true.  What is the catch?

SRI requires more labor per hectare than traditional methods of growing rice.  When farmers are not familiar and comfortable with transplanting tiny seedlings with fairly exact spacing and depth of planting, this operation can initially take twice as long.  But once farmers are comfortable and skilled with the technique, transplanting takes LESS time because there are so many fewer plants to put in. 
 
With SRI, more time is spent applying water carefully than when fields are kept flooded all the time.  This means that fields should initially be constructed with appropriate irrigation systems that allow water to be "put on" and "taken off" the field at regular intervals.  Most rice fields are not set up like this (i.e. they were designed to hold the maximum amount of water), so some reconstruction of fields may be necessary before initiating SRI production systems.
 
Weeding takes more time if there is no standing water.  However, the yields may be increased several-fold due to the increased soil aeration which results from weeding with the rotary push-hoe.  The extra yield more than pays for the extra expense of weeding.
 
At first, SRI can take 50 to 100% more labor (and more skilled and exacting labor), but over time, this amount is reduced.  Experienced SRI farmers say it can even require less labor once techniques are mastered and confidence is gained.  Since yields can be two, three, and even four times more than with current practices, the returns to both labor and to land are much higher, justifying the greater investment of labor. 
 
Some farmers are skeptical of SRI's benefits.  It seems almost like magic at first, though there are good scientific reasons to explain each part of the process.  These farmers should be encouraged to try the methods out in a small area, to satisfy themselves about the benefits and to start gaining the skills on a small scale. 
 
Planting and weeding are initially the most labor-intensive part of SRI.  Many families are constrained by the amount of labor that is available, either within the household or for hire.  If someone does not have enough labor available to plant and tend all the rice fields using SRI, he or she can cultivate just part of the land with rice using SRI methods, getting higher returns for both labor and land.  Then other crops can be planted on the remainder of the land at times when labor is available.

Is SRI sustainable?  How can you get such high yields?

Scientists are not certain, and many are very skeptical, about how such high yields can be obtained on such poor soil as that found in Madagascar.  Fortunately, SRI methods have been found to produce much improved yields in other countries (China, India, Indonesia, the Philippines, Sri Lanka and Bangladesh), so we know that it is not a methodology with success limited to one country.
 
Little systematic evaluation has yet been done by plant or soil scientists.  However, here are a few proposed explanations for which there is some basis in scientific literature:
1) Biological nitrogen fixation (BNF).  Free-living bacteria and other microbes around the roots of rice may fix nitrogen for the plants.  The presence of such bacteria has been documented for sugar cane, which is in the grass family along with rice.  Where nitrogen fertilizer had not been applied (since this suppresses production of the enzyme nitrogenase required for BNF), microbial action fixed 150-200 kilograms of nitrogen per hectare for the cane.  However, less nitrogen fixing occurs where chemical fertilizers have previously been applied.  It is known that about 80% of the bacteria in and around rice roots have nitrogen-fixing capability, but this potential will not be realized where inorganic N has been applied, or possibly in anaerobic, water-logged soil.
2) Other research suggests that plants can grow very well with extremely low concentrations of nutrients, as long as those nutrients are supplied evenly and consistently over time.  We know that compost furnishes a low, steady supply of nutrients.
3) Plants with extensive root growth have better access to whatever nutrients exist in the soil.  Extensive root growth can result when the roots of young seedlings have lots of space and oxygen, and when water and nutrients are scarce enough that roots need to "go looking" for them.  Such extensive roots may be able to extract more balanced nutrients from the soil, including some scarce but necessary micronutrients.
 
Much more remains to be studied about and learned from SRI, but scientists are starting to take an interest in it as reports of superior yields increase.  SRI should be seen not as a technology to be applied mechanistically, but rather as a methodology to be tested and adapted to farmers' conditions.  Farmers need to be good observers and good learners to make the best use of the insights that SRI provides.
 
In summary, the main elements of SRI are as follows:  Transplant young seedlings to preserve their potential for tillering and root growth while they also benefit from other favorable growing conditions.  Provide the plants with wide spacing, without competition either in hills or between hills.  Keep the soil well aerated but sufficiently moist, so that the roots can "breathe"; for this, use both water management and weeding practices that aerate the soil.  Finally, provide nutrients that feed the soil as well as the plant, so that a rich and healthy soil gives plants the nutrients and positive environment needed for best growth and performance. 
 
For More Information
 
Norman Uphoff, director.  Cornell International Institute for Food, Agriculture and Development (CIIFAD); Box 14 Kennedy Hall, Cornell University, Ithaca  NY 14853  USA (Tel: 01-607-255-0831; Fax: 01-607-225-1005; e-mail: NTU1@cornell.edu).
 
Sebastien Rafaralahy, President, and Justin Rabenandrasana, Secretary.  Association Tefy Saina; B.P. 1221, Antananarivo, Madagascar.  (Tel: 01-261-222-0301; e-mail:  tefysaina@simicro.mg).  If you can communicate in French, please do so; Tefy Saina can read and write English fairly well, but communication is easier en français.
 
Special thanks to Norman Uphoff for helpful comments on the manuscript, and to Association Tefy Saina for editing.  Thanks to Glenn Lines for editing and for sending us diagrams of the mechanical weeders.

 
 
 

 




This article appeared in EDN # 70 January 2001



This article comes from ECHOs Technical Network Site
http://www.echotech.org/network

The URL for this story is:
http://www.echotech.org/network/modules.php?name=News&file=article&sid=461

Wednesday, July 30, 2008

agro-climatic zones of Tamil Nadu

Based on rainfall distribution, irrigation pattern, soil characteristics, cropping pattern and other physical ecological and social characteristics, Tamil Nadu State is classified into seven distinct agro-climatic zones delineated as follows:

  1. North Eastern Zone: This zone covers the districts of Kancheepuram, Tiruvellore, Vellore, Thiruvannamalai, Cuddalore (excluding Chidambaram and Kattumannarkovil taluks) and Ariyalur and Perambalur taluks in Perambalur district.
  2. North Western Zone: This zone comprises Dharmapuri district (Excluding hilly areas), Salem and Namakkal districts (Excluding Tiruchengode taluk) and Perambalur taluk of Perambalur district.
  3. Western Zone: Comprising Erode and Coimbatore districts, Tiruchengode taluk of Namakkal, Karur Taluk of Karur district and northern parts of Madurai district.
  4. Cauvery Delta Zone: This zone covers the Cauvery Delta area in Thanjavur, Nagapattinam,Thiruvarur districts and Musiri, Tiruchirappalli, Lalgudi, Thuraiyur and Kulithalai taluks of Tiruchirappalli districts, Aranthangi taluk of Pudukottai and Chidambram and Kattumannarkoil taluks of Cuddalore District.
  5. Southern Zone: This zone includes Ramanathapuram, Virudunagar, Sivaganga, Tuticorin and Tirunelveli districts, Dindigul and Natham taluks of Dindigul district, Melur, Tirumangalam, Madurai South and Madurai North taluks of Madurai district and Pudukottai district (excluding Aranthangi taluk).
  6. High Rainfall zone: This zone consists of Kanyakumari district.
  7. Hilly zone: This zone covers the hilly regions, the Nilgiris, Shevroys, Elagiri-Javadhi, Kollimalai, Pachaimalai, Anamalais, Palanis and Podhigai malai.

Excertpts from Agroforestry - a viable alternative for social, economic and ecological sustainability

  1. Nursery practices: Several important practices like standard size of seedbed (010m X1m), proportion of sand, soil and farmyard manure for seed bed preparation (1:1:1), depth of seed sowing (medium depth), height of the seed bed for producing seedlings in poly bags (30 cm), age of seedlings for transplanting, time of seed sowing, periodicity of watering the seed bed, chemical used to break dormancy, fertilizer application and weeding the seed bed are better adopted by farmers. Reasons for poor adoption of practices like inoculation with biofertilizers, seed treatment and recommended quantity of fertilizer application is due to lack of complete knowledge and cost involved and their non-availability.
  2. Pre-planting practices: Practices like required size of pit of planting, proportion of soil and farm yard manure to fill the pit were adopted by majority of the farmers since all these practices are simple and were guided by field functionaries while they fail to adopt recommended number of seedlings per unit area (not more then 5% of the total area) in the farmland due to lack of knowledge on recommended spacing.
  3. Planting Practices: Majority of the farmers have adopted important technologies like planting of seedlings, water dripping near beds after planting, root trimming for better establishment of seedlings, fertilizer application and control of pests/diseases. The reason must be that all these practices are simple, easy to practice and most of the activities were carried out under the supervision of the extension personnel. Some of the complex technologies like dosage of recommended fertilizer application, dosage of chemicals to be used for pest and disease management and removing bottom leaves while planting were not adopted due to lack of knowledge and also field personnel failed to provide right guidance. Pit method of planting was followed by majority of farmers as it was found good for better establishment of seedlings. Pot irrigation was practiced after planting. Among different water harvesting techniques adopted for irrigation, `V' notch method was practiced by majority of farmers as this method is a most efficient in water harvesting and save water without any loss.
  4. The findings revealed that majority of farmers adopted agriculture cum silviculture cum horticulture system of agroforestry. (Fig. 5)The Karnataka farmers incorporated forest trees such as Tectona grandis, Acacia nilotica, Grevillea robusta, Eucalyptus hybrid, Acacial auriculiformis, Azadirachta indica, Melia dubia, Cassia siamea, Pngamila pinnata, Causuarina equisetifolia, Denrocalamus strictus, Dalbergia catefolia, Pterocarpus marsupune , Albizia lebbek and fodder green manure crops like Sesbania grandiflora, Erythrina indica, Glyricidia maculata, Leucaena leuococephala, Ceiba pentandra and fruit crops like Mangifera indica, Anacardium oxidentale, Zoziphus marutiana, Tamarindus indica and Emlica officinalis. As the nearby forests are declared as reserve forests, farmers started facing acute timber and fuel problems. Therefore majority of the farmers adopted the tree species mainly with a reason to meet their fuel and poles logs demand. Also, majority of the farmers were deprived of irrigation facilities, they opted mixed plantation thinking that such ventures will bring more returns. The agroforestry are unique in Kerala because they are always around the farmers house and hence it is often called as homestead agroforestry. The major crops associated with in the homestead agroforestry system in Kerala are coconut (100%), Banana (99%) vegetables (98%) , Mango (95%), Papaya (90%) Tulasi (85%), Pepper (83%), Glyricidia (83%), Arecanut (79%), Jack (76%), Tamarind (75%), etc. Coconut (Cocos nucifera) with synonym `Kalpavriksha', the tree of heaven is the most dominant plantation crop prevalent in homestead of Kerala. It is popularly known as a benevolent provider of all basic needs. In addition to coconut, perennial plants such as arecanut, mango, jack, pepper, (trailed on any of the trees), tamarind and annuals like banana, solanaceous vegetables, bhendi, amaranthus, tapioca, colocasia, dioscorea, amorphophalllus, ginger, turmeric etc, are grown. All these crops are grown mixed in the coconut garden without any specific row arrangement. Farmers have taken every effort to utilize the both in horizontal and vertical dimensions. Thus, these homesteads consists of multitude of crops representing a multi-tier canopy configuration which ensures a high level of exploitation of environmental resources. The canopy architecture and pattern of component interaction ensure better energy harvesting and soil exploitation. Homesteads of Kerala, who have sacred grooves are integral part of life, culture and folklore traditions of culture. Some kind of divinity is attached to these mini genetic pool, which directly promote the conservation and sustainable utilization of these natural eco-systems. The study also revealed that the range of crop species is low in case of farmers with less area and the range increases with an increase in area. The tendency of agroforestry farmer to incorporate various species in his farm increased as the area increased so as to ensure high level of exploration of environmental resources.
  5. Economics of agroforestry
    It is found that farmers were earning at an average of $ 800 or Rs. 31466.20 / every year from one acre of agroforestry plot which is much profitable than any traditional crop. The farmers were also able to save surplus money in the bank, which is a healthy sign of economic sustainability.

http://www.fao.org/DOCREP/ARTICLE/WFC/XII/0051-B5.HTM


An Agricultural Testament by Sir Albert Howard

Although some concepts of organic farming predated his work, today Sir Albert Howard (1873-1947) is regarded by most as the founder and pioneer of the organic movement. Born into an agricultural life, he never strayed far from it. Raised on a farm in England, and educated at Cambridge, he served for a time (1899 -1902) as mycologist in the Imperial Department of Agriculture for the West Indies, before returning to England to teach agricultural science from 1903-1905 at South-Eastern Agricultural College at Wye. He then moved to India where, for twenty-six years he directed several agricultural research centers before permanently returning to England in 1931.

It was after his return that he became well known for his concepts and philosophy of organic farming. Drawing on his many years of agricultural research experience, he wrote several widely read books espousing his concepts and theories of composting, soil fertility, and health and disease.

In 1943, Howard published the book, An Agricultural Testament, in which he described a concept that was to become central to organic farming--the importance of utilizing available waste materials to build and maintain soil fertility and humus content.8 According to what he called "the Law of Return," he strongly advocated the recycling of all organic waste materials, including sewage sludge, back to farmland.

In Farming and Gardening for Health or Disease (later published as Soil and Health), Howard introduced the idea that disease, whether in plants, animals or humans, was caused by unhealthy soil and that organic farming techniques would make the soil and those living on it, healthy.12 As evidence he cited his observations that animals fed with crops grown in humus-rich soil were able to rub noses with diseased animals without becoming infected. More generally he argued that crop and animal health was a birthright and that the correct method for dealing with a pathogen was not to destroy the pathogen but rather to try to learn from it or to "make use of it for tuning up agricultural practice."

Clearly Howard favored the study of whole systems over reductionism. Such a study comparing organic and non-organic farms was attempted from 1939 to 1969 in England by Lady Eve Balfour. Her observations from this comparison of whole farms were described in her widely read book The Living Soil and The Haughley Experiment first published in 1943 and republished in 1974.

ZERO BUDGET FARMING

Shri Subhash Palekar is the originator of ZERO BUDGET FARMING. The books are available in Marathi, Hindi, English, Kannada and Gurumukhi.His address is Mr.Subhash Palekar, Namuna Galli No.5,Namuna Peth, AMRAVATI. Vidarbha , Maharashtra State.Pin 444601 Phone 0721-2652108 and Mobile 9423702877

Office address:
19 Jaya Colony
Near Telecom Colony
Sainagar Post
Amravati
Pin 444607
Maharashtra

Rs. 520 for 3 books in English
Mr. Ardhanareeswaran in Salem is organizing a 4-day course in August. Contact numbers are +919786085992, 04298321309

Mr. Palanivelan in Chennai
+919360023100

Tuesday, July 29, 2008

Mr. Narayanaswamy, neighbour

New No: 6/Old No: 72
Appar Street

Mobile: +919940017927
home: +914424914945

Thursday, July 24, 2008

Tomato Cultivation -- Kissan Kerala

TOMATO (Lycopersicon esculentum)

 

PlantCharacteristics

Tomato is a tropical vegetable belonging to the family Solanaceae. The ripe fruits are used as vegetable, salad, soup and in the preparation of sauce, jam and ketchup. The fruit is a rich source of vitamin A and C.

Top...

Varieties

Bacterial wilt resistant varieties: Sakthi, Mukthi, Anagha High yielding variety: Pusa Ruby

Top...

SeedsAndCultivation

Seed rate: 400 g/ha Raising seedlings Tomato is a transplanted vegetable. Seeds are sown in the nursery and one-month-old seedlings are transplanted to the main field. For sowing the seeds, raised seed beds of 90 to 100 cm width and of convenient length are prepared to which well decomposed organic matter has been incorporated. After sowing the seeds, mulch with green leaves and irrigate with a rose-can daily in the morning. Remove the mulch immediately after germination of the seeds. Restrict irrigation one week before transplanting and irrigate heavily on the previous day of transplanting. Time of planting Transplant the seedlings during October-November for an irrigated crop. Land preparation and transplanting Land is prepared to a fine tilth by thorough ploughing or digging. Well rotten organic manure is incorporated in the soil and seedlings are transplanted in shallow trenches / pits / levelled lands. Transplanted seedlings may be given temporary shade for three to four days during hot days. Spacing Transplant the seedlings at 60 x 60 cm. Stake the plants if necessary

Top...

WaterManagement

Irrigate at two or three days interval.

Top...

NutrientManagement

Apply well rotten farm yard manure / compost @ 20-25 t/ha at the time of land preparation and mix well with the soil. A fertilizer dose of 75:40:25 kg N:P2O5:K2O / ha may be given. Half the dose of nitrogen, full phosphorus and half of potash may be applied as basal before transplanting. One fourth of nitrogen and half of potash may be applied 20-30 days after planting. The remaining quantity may be applied two months after planting.

Top...

WeedManagement
  Weeding followed by fertilizer application and earthing up may be done at one and two months after transplanting.
PestManagement

Tomato fruit borer attacks developing fruits forming bore holes. Application of Sevin 50 per cent WP @ g/litre of water is effective against this pest. The fields and bunds should be kept weed free to minimize the attack of Thrips.

Top...

DiseaseManagement

For avoiding damping off of the seedlings in the nursery, sow the seeds as thin as possible in raised beds prepared in the open area. Spray nursery and main field with 1% Bordeaux mixture at monthly intervals. Uproot and destroy the plants affected by bacterial wilt and mosaic. Cultivate resistant varieties like Sakthi, Mukthi and Anagha in bacterial wilt prone areas.

 Top...

Harvesting

The fruits are harvested at breaker stage( when ¼ of the surface shows ripening symptoms).

Top...

Processing

Not Available

  Top...

AverageYield
 

15-30 tonnes/ha for local varieties. 60-80 tonnes/ha for F1 Hybrids.

Wednesday, July 23, 2008

Earthen pot offers a bounty of benefits for Kanyakumari ryots

M.J. PRABU

The timing is very important for spraying this formulation

— Photo: VK-Nardep

Easy practice: Women farmers being trained to manufacture the mud pot nutrient in Kanyakumari district, Tamil Nadu.

The farmers of Kozhikodupothai in Kanyakumari district, Tamil Nadu, have a traditional knowledge base regarding bio-pest repellent formations and also plant growth promotion formulations.

One such traditional formulation called Manpannai sedi thailam in Tamil (Mud pot formulation) combines the effects of both fostering nutritional growth as well as being a pest repellent.

Field experiments

Initially the formulation was experimented with in a small area owned by a rose cultivator Ms. S. Thangam, and was found to completely obviate the need for chemical fertilizers. In addition, Panchagavya was also used for her rose plants.

"The mud pot formulation on my rose plants had a good effect on the size, yield and growth of flowers. In fact all the flowers had a deep colour and a longer shelf life. The flowers after plucking remained fresh for 2-3 days when kept at room temperature," said Ms. Thangam.

Natural farming

In fact she was featured in a video at London for the Ashden Award presentations that showcased Vivekananda Kendra-Natural Resources Development Project (VK-Nardep)'s efforts at increasing food production through natural farming practices.

Ms. Thangam's adoption of this innovation encouraged other farmers to try it. Though initially reluctant to stop using chemical fertilizers, they experimented on a small scale first.

The economic benefits that each farmer incurred created a cascading effect. For example, two years ago, Ms. Thangam was spending about Rs.3,500 for an acre of rose cultivation. At present her expenditure for an acre has come down to Rs. 1,300.

Decreasing expense

"Using this mud pot formulation and following organic practices has greatly decreased the expenditure I was regularly incurring when using chemical fertilizers," she said.

Who was responsible for developing this mud pot plant nutrient?

Mr. Aravindan, social scientist, of the kendra said, "an eminent organic farmer and retired agricultural officer, S. Murugan, is responsible for developing this formulation. He had developed a local plant formulation method with a traditional technique practised in Madya Pradesh."

"Once this formulation was tested successfully in Ms. Thangam's rose field, we decided to give training to more farmers in making this formulation, which has almost been forgotten."

According to Mr. Aravindan, about 100 gms of Vitex, Neem and Calotropis leaves each, 50 gm of powdered pulses (any pulse), one litre of curd or thick butter milk, and 1.5 litres of water are the basic items required for making this formulation.

The leaves are first ground into a fine paste. The paste is then mixed with the powdered pulses (any pulse).

This mixture is then added to one litre of curd. To this is added 1.5 litres of water. The mixture is kept in a mud pot and the mouth covered with a cloth.

The mixture is stirred every day in a clockwise and anticlockwise direction. After 15-20 days the formulation is ready for use. The formulation is diluted in 20 litres of water and sprayed in one acre of crop. The spraying is done on the foliage. The timing is very important for spraying this formulation. The best time is just before dawn and after dusk.

Effective control

The spraying effectively controls several pests and serves as a growth promoter and nutrition provider for the plants.

"Organic inputs have multiple advantages. Apart from reducing input costs, they also keep the environment safe from toxicity.

If one compares a field where chemical fertilizers have been used to grow the crops and a field where organic inputs such as farmyard manure, vermicompost and panchagavya have been used, one can clearly see the presence of earthworms, millipedes and ants is more in an organic field," Mr. Aravindan explained.

Useful organisms

"Our kendra conducted studies for the presence of earthworms and ants in different fields. We found that chemical inputs greatly disturbed the presence of these useful organisms and in several fields where chemical fertilizers were used these organisms were totally absent.

"Once some of the farmers started switching over to organic practices, we were able to observe the presence of these organisms again in the soil," he said.

Thursday, July 17, 2008

Award for weed control centre of TNAU Staff Reporter

For contribution on weed survey


RECOGNITION: C. Chinnusamy, Principal Investigator (left), receiving the national award for the All India Co-ordinated Research Programme on Weed Control of the Tamil Nadu Agricultural University from Narendra Singh, Minister for Agriculture, Government of Bihar (right), in Patna.

COIMBATORE: The All India Co-ordinated Research Programme on Weed Control, functioning in the Department of Agronomy, Tamil Nadu Agricultural University, has received the national best centre award for 2007-08.

According to a release, the centre, which was set up in 1982, has been selected for the award by the National Research Centre for Weed Science, Jabalpur, a constituent organisation of the Indian Council for Agricultural Research, New Delhi.

The award is in recognition of the centre's contribution on weed survey and surveillance on the invasive noxious weeds in different agro-ecosystems of Tamil Nadu. It has also developed and disseminated integrated weed management technologies for sugarcane, maize, rice, groundnut, oilseed crops, aquatic weed water hyacinth and other problematic weeds.

Principal Investigator and Professor of Agronomy C. Chinnusamy received the award from Narendra Singh, Minister for Agriculture, Government of Bihar, in Patna recently. His team consists of N.K. Prabhakaran, Professor, Agronomy, S. Meena, Associate Professor, Soil Science, and M. Sivakumar and S. Padma Rani, Assistant Professors, Agricultural Economics.

© Copyright 2000 - 2008 The Hindu

Monday, July 14, 2008

Rs. 8500 handed over to Anand towards 75% charges for Indocert certification of Yercaud coffee plantation


Offer letter with fees to be paid for Yercaud coffee farm received from Indocert


Sheela telephonic conversation with Mr. Uday Kumar re purchase or rice and turmeric by Spencers Retail

Sheela talked to Mr. Uday Kumar. An email has been sent to Uday Kumar  from Anand and to Mr. Ramasubramaniam, Merchandising Zonal Head for Kerala and Tamil Nadu, rams@spencersretail.com.  Yet to decide re sending email to  Mr. G. Murali, muralig@spencersretail.com. We need to establish contact with Mr. Attanu Chakravarthy.

Power fence firm moves court

BANGALORE: A firm, which was engaged by the Forest Department to put up fences in the Hunsur Forest Range to prevent wild animals from crossing over to villages surrounding the forests, has petitioned the Karnataka High Court against an order of the Forest Department asking it to pay damages for fences destroyed by wild animals.

The firm, IBEX Gallagher, said it was involved in the business of manufacturing, marketing and maintaining power fencing. It said it was installing solar fencing. IBEX said it had installed fences around Parliament House, Cabinet Secretariat building, UAE Embassy, HAL, Ship Building Centre at Visakhapatnam, Bandipur forest, and Central prison at Parappana Agrahara. It said the Forest Department on October 30 called for tenders to put up power fences in Hunsur forest range covering 84 km of forests.

It said the department had accepted its bid.

The firm said it had made it clear to the Forest Department that it could not guarantee normal wear and tear of the equipment.

It said the department claimed that more than 30 km of the 84-km fence was destroyed by wild animals and elephants. The department asked the company to pay damages of Rs. 37 lakh and sent a notice to the firm.

The firm urged the court to stay the notice.

Justice L. Narayanaswamy asked the State to file its objections within a week and adjourned hearing on the case.

© Copyright 2000 - 2008 The Hindu

Sunday, July 13, 2008

Tuesday, July 8, 2008

Last 2 sets of adeniums have germinated.


Contact number for Dr. N. Bharathi of Growmore Biotech -- 09443351957

Received watering can + 10 tissue culture banana plantlets + 2 seed trays (Rs. 12 per tray)

Mr. Sam Venkatesh of Energy Plantation Projects India Limited -- 09844018287

Melia among other species being grown as an energy plantation under dryland conditions. Not of great interest to us.

Contact number for Mr. Natarajan (MRR's friend) 9940651401


Interview with Mr. M.S.Vagh, MD, Hunsur Plywoods

Melia is extensively used in plywood industry and is a recommended
species. It is a naturally fast growing species. In Kerala it grows
too fast because of high rainfall - Melia wood from Tamil Nadu and
Karnataka is preferred.
He suggested a pit size of 2' x 2' x 2' with 20' by 20' spacing giving
a plant density of about 109 trees to an acre.
Irrigation and fertilizer use only for the first 2 years if at all and
thereafter no irrigation or fertilizing as otherwise the tree would
grow too fast.
The larger pit size would naturally allow more rainwater to reach the
plant. According to him the tree is to be ideally harvested for
plywood core veneer purposes in the 12th year.
The average tree would have a 24' bole with 3'-3.5' girth. Each tree
would yield about 15 cft of wood. Presently the wood is bought by them
at Rs. 225 to Rs. 250 per cft. Trees for facing veneer need to be
about 30 years old and these would be procured at Rs. 500 to Rs. 600
per cft. The process for obtaining core veneer is through peeling and
even smaller logs can be peeled. For facing veneer the process is more
akin to splitting and you need larger sized logs.
He suggested planting 85% Melia with 15% higher value timber trees
like mahogany.
Promised to send a note and also was kind enough to invite Sara for
further discussion.
Mr. Vagh's contact number is 0822-2252025

Melia Azedarach Factsheet



AgroForestryTree Database

 
   
 
    A tree species reference and selection guide      
  Admin          
  Home    
Botanic Name
Common Name
Search
   
Melia azedarach
Species identity
Ecology and distribution
Propagation and management
Functional uses
Pests and diseases
Additional Info
Bibliography
Images

Species identity
Taxonomy
Current name: Melia azedarach
Authority: L.
Family: Meliaceae


Synonym(s)
Melia bukayan Royle.
Melia composita Willd.
Melia dubia Cavanilles
Melia japonica Don.
Melia sempervirens (L.) Sw.


Common names

(Bengali) : bakarjan, ghora nim, mahanim, mahnim
(Cantonese) : mindi kechil
(English) : azedarach, bead tree, China berry, China tree, Persian lilac, pride of India, syringa
(Filipino) : bagaluñga, balagañgo, paraiso
(French) : Fleurs lilas, Piment d'eau
(Hausa) : kurnam nasara
(Hindi) : bakain, bakarja, betain, deikna, dek, drek, mallan nim
(Indonesian) : gringging, marambung, mindi
(Khmer) : dâk' hiën
(Lao (Sino-Tibetan)) : h'ienx, kadau s'a:ngz
(Luganda) : lira
(Malay) : mindi kecil
(Nepali) : bakaina, bakaino, bakena
(Sanskrit) : mahanimba
(Spanish) : Alilaila, Arbol enano, Lila, Lilayo, mal kohomba, Paraíso, Violeta
(Swahili) : mmelia, mwarubaini nusu
(Tamil) : malai vembu, mallay vembu, puvempu
(Thai) : khian, lian, lian-baiyai
(Tigrigna) : melia
(Trade name) : persian lilac
(Vietnamese) : c[aa]y xoan, s[aaf]u d[oo]ng, xoan d[aa]u
(Yoruba) : eke-oyinbo

Botanic description
Melia azedarach is a deciduous tree up to 45 m tall; bole fluted below when old, up to 30-60 (max. 120) cm in diameter, with a spreading crown and sparsely branched limbs. Bark smooth, greenish-brown when young, turning grey and fissured with age. Leaves alternate, 20-40 cm long, bipinnate or occasionally tripinnate. Leaflets 3-11, serrate and with a pungent odour when crushed. Inflorescence a long, axillary panicle up to 20 cm long; flowers showy, fragrant, numerous on slender stalks, white to lilac; sepals 5-lobed, 1 cm long; petals 5-lobed, 0.9 cm long, pubescent; staminal tube deep purple blue, 0.5 cm long, 1 cm across. Fruit a small, yellow drupe, nearly round, about 15 mm in diameter, smooth and becoming a little shrivelled, slightly fleshy. Seed oblongoid, 3.5 mm x 1.6 mm, smooth, brown and surrounded by pulp. Because of the divided leaves, the generic name is derived from the Greek 'melia' (the ash); the specific name comes from the Persian 'azzadirackt' (noble tree).
Ecology and distribution
History of cultivation
This tree, well known as Persian lilac, is native to India but is now grown in all the warmer parts of the world; in many of these places it is naturalized. It is widely planted in Nigeria, for example.
Natural Habitat
A tree of the subtropical climatic zone, the natural habitat of M. azedarach is seasonal forest, including bamboo thickets, Tamarindus woodland. It is highly adaptable and tolerates a wide range of conditions; for example, the most frost-tolerant cultivars can be planted outdoors in sheltered areas in the British Isles.
Geographic distribution
Native : Bangladesh, India, Indonesia, Laos, Malaysia, Myanmar, Nepal, Pakistan, Papua New Guinea, Sri Lanka, Thailand, Vietnam
Exotic : Afghanistan, Albania, Argentina, Australia, Botswana, Brazil, Brunei, China, Croatia, Cuba, Djibouti, Dominican Republic, Eritrea, Ethiopia, France, Greece, Guatemala, Honduras, Iran, Iraq, Italy, Jamaica, Kenya, Korea, Republic of, Lesotho, Malta, Mexico, Mozambique, Namibia, Nicaragua, Panama, Paraguay, Philippines, Portugal, Puerto Rico, Saudi Arabia, Singapore, Solomon Islands, Somalia, South Africa, Spain, Swaziland, Syrian Arab Republic, Tanzania, Tonga, Turkey, Uganda, United Kingdom, United States of America, Zanzibar

Biophysical limits
Altitude: 0-1800 m, Mean annual temperature: 23-27 deg. C, Mean annual rainfall: 350-2000 mm Soil type: Deep, fertile, sandy loam soils support the best growth.

Reproductive Biology
It flowers from March to May in the northern hemisphere, although some forms flower throughout the summer and even throughout the year.

Propagation and management
Propagation methods
Fruit drop is limited, and ripe fruit clings to the branches for several months even after the leaves have fallen. Propagation is by direct sowing or by planting out seedlings or stumps; 85% germination may be expected in 2 months.

Tree Management
Under optimal conditions, M. azedarach grows fast. It is generally deciduous, but some forms in the humid tropics (e.g. in Malaysia and Tonga) are evergreen. Does not coppice well from large stumps, but excellent coppice is obtained from trees up to a girth of 0.9 m. The tree resprouts after cutting and regrows after pollarding, making it suitable for pole production.

Germplasm Management
Seed storage behaviour is orthodox. Viability is maintained for 1-3 years in hermetic storage at room temperature with 11-15 % mc. There are 470-2800 seeds/kg.

Functional uses
Products
Fodder: Leaves are lopped for fodder and are highly nutritious. Fuel: Fuelwood is a major use of M. azedarach. It has a calorific value is 5100 kcal/kg. Timber: M. azedarach wood (the 'white cedar' of commerce), which resembles mahogany, is used to manufacture agricultural implements, furniture, plywood, boxes, poles, tool handles; it is used in cabinet making and in construction because of its resistance to termites. The density is 510-660 kg/cubic m. Lipids: Oil suitable for illumination has been extracted experimentally from berries. Poison: Aqueous and alcoholic extracts of leaves and seed reportedly control many insect, mite and nematode pests. However, because they contain toxic components, care is needed in their use. The fruit of M. azedarach is highly toxic to warm-blooded animals; the consumption of 6-8 fruit can cause nausea, spasms, and in children, even death. Medicine: M. azedarach is well known for its medicinal uses. Its various parts have antihelmintic, antimalarial, cathartic, emetic and emmenagogic properties and are also used to treat skin diseases. Dried ripe fruit is used as an external parasiticide; some toxic components are found in the seed oil, the oral intake of which may cause severe reactions and even death. Other products: Fruit stones make ideal beads and are used in making necklaces and rosaries.

Services
Shade or shelter: Widely planted as a shade tree in coffee and abaca (Musa textilis) plantations. Ornamental: A well-known ornamental grown, for example, as an avenue tree, for its scented flowers and shady, spreading crown. Intercropping: M. azedarach is a useful species for growing with crops such as wheat. It has been successfully planted with sugarcane.

Pests and diseases
The trees are attacked by fungi that cause brownish butt rot and brownish pocket rot. Certain larvae defoliate the tree and mine the leaves.

Bibliography
Albrecht J. ed. 1993. Tree seed hand book of Kenya. GTZ Forestry Seed Center Muguga, Nairobi, Kenya.
Anon. 1986. The useful plants of India. Publications & Information Directorate, CSIR, New Delhi, India.
Bein E. 1996. Useful trees and shrubs in Eritrea. Regional Soil Conservation Unit (RSCU), Nairobi, Kenya.
Bekele-Tesemma A, Birnie A, Tengnas B. 1993. Useful trees and shrubs for Ethiopia. Regional Soil Conservation Unit (RSCU), Swedish International Development Authority (SIDA).
Coates-Palgrave K. 1988. Trees of southern Africa. C.S. Struik Publishers Cape Town.
Erkkila A, Harri S. 1992. Silva Carelica Forestry in Namibia 1850-1990. University of Joensuu.
Faridah Hanum I, van der Maesen LJG (eds.). 1997. Plant Resources of South-East Asia No 11. Auxillary Plants. Backhuys Publishers, Leiden, the Netherlands.
Hocking D. 1993. Trees for Drylands. Oxford & IBH Publishing Co. New Delhi.
Hong TD, Linington S, Ellis RH. 1996. Seed storage behaviour: a compendium. Handbooks for Genebanks: No. 4. IPGRI.
ICRAF. 1992. A selection of useful trees and shrubs for Kenya: Notes on their identification, propagation and management for use by farming and pastoral communities. ICRAF.
Katende AB et al. 1995. Useful trees and shrubs for Uganda. Identification, Propagation and Management for Agricultural and Pastoral Communities. Regional Soil Conservation Unit (RSCU), Swedish International Development Authority (SIDA).
Kayastha BP. 1985. Silvics of the trees of Nepal. Community Forest Development Project, Kathmandu.
Lanzara P and Pizetti M. 1978. Simon & Schuster's guide to trees. Simon & Schuster, Inc., New York.
Little EL. 1983. Common fuelwood crops. Communi-Tech Association, Morgantown, West Virginia.
Mbuya LP et al. 1994. Useful trees and shrubs for Tanzania: Identification, Propagation and Management for Agricultural and Pastoral Communities. Regional Soil Conservation Unit (RSCU), Swedish International Development Authority (SIDA).
Noad T, Birnie A. 1989. Trees of Kenya. General Printers, Nairobi.
Perry LM. 1980. Medicinal plants of East and South East Asia : attributed properties and uses. MIT Press. South East Asia.
Singh RV. 1982. Fodder trees of India. Oxford & IBH Co. New Delhi, India.
Williams R.O & OBE. 1949. The useful and ornamental plants in Zanzibar and Pemba. Zanzibar Protectorate.
 
     
   
 
    Glossary : A B C D E F G H I J-L M N O P-Q R S T U V W X-Z  
   
 
 
 © ICRAF Copyright Cooperated with PROSEA network 

Monday, July 7, 2008

250-400 tomato seeds per gram. Verify with seed packet.

Sow 98 seeds per tray in pre-moistened coco peat. Stack and keep in
cool dark area. Germination in 3-4 days. Grow out under shade for 20
days. Water with rose can. Plant out in field.

Paid another 10k to Muthuraj at farm

Thursday, July 3, 2008

Paid Jayachandran Rs. 10000 to be handed over to Muthuraj for farm expenses


Gautam Kadam, Melia grower in Kollegal

Sheela has set up a meeting with Mr. Gautam Kadam, Engineer turned Melia silviculturist in Kollegal, Karnataka. Will be visiting him before visiting Mr. Pugazhendi in Gundalpet. Has about 220 acres of land under Melia.

Wednesday, July 2, 2008

Indo American Hybrid Seeds -- Bangalore Addresses

BANGALORE
Garden Center:

Post Bag No 7099, 17th Cross, 2nd 'A' Main, K.R.Road, Banashankari II Stage,
Bangalore - 560 070. 
Tel: 26760111

Corporate Office : Banashankari-Kengeri Link Road, 7th KM, Channasandra Village,
Bangalore South Taluk.
Tel: 080 - 28600356 / 28602356 / 28604499
Fax: 28602912

Ambara:
119,Annaswamy Mudaliar Road,(opp. Lakeside Ganapati Temple & Beside Foto Flash),Ulsoor, 
Bangalore-560042
Tel
: 25575378,9945802091

Tuesday, July 1, 2008

Planted 2 batches of Adenium seeds; 3 day old red and 1 day old pink; seeds planted in trays; 3/5 vermicompost, 2/5 sand; panchakavyam watering


Paid Rs. 2500 to Mr. Akbar on 30/7/2008 to be advanced to Dindigul farm labour


Paid Rs. 8200, TM Kalaiselvi, KVB, Bhavani, A/C 111 415 539 947 towards turmeric planting material


Paid Rs. 29450 to SR Sundaraman, KVB, Sathyamangalam, A/C 118 815 560 588 towards turmeric polisher


Contact Info for IOB

M. Sundaresan, PS to ED(GN) IOB
9444991412

G. Narayanan, Executive Director
+91 44 28411041 Off
+91 44 28274433 Res

Dr. S. Elangovan, General Manager
+91 44 28519441
+91 44 28277794
94440 15411
(Handed over revised financial worksheet on 1 July, 2008

Complete List of the world's Palm Trees [Arecaceae]

This list is a free to use horticultural and conservation research tool and contains the current up-to-date list of all the world's palm tree species.

Click on any of the Scientific names in the list to load detailed facts and information about the species

Search any palm tree species' name:
(scientific, common or synonym)

Display only those species which have a hardiness of

Please Note: This list and all specie information pages linked from here are a work in progress. It is under continuous, infinite revision. We welcome user feedback regarding any errors, typos and your opinions of the facts contained. Contact Us links can be found on the bottom of each specie page.

Scientific Name Common Name
Acanthophoenix rubra 
Acoelorrhaphe wrightiiEverglades palm
Acrocomia aculeataCoyol palm
Acrocomia aculeata sp. totaiTotaí Palm
Acrocomia hassleri 
Actinokentia divaricata 
Actinokentia huerlimannii 
Actinorhytis calappariaCalappa palm
Adonidia merrilliiChristmas Palm
Aiphanes acaulis 
Aiphanes chiribogensis 
Aiphanes deltoidea 
Aiphanes duquei 
Aiphanes eggersii 
Aiphanes erinacea 
Aiphanes gelatinosa 
Aiphanes graminifolia 
Aiphanes grandis 
Aiphanes hirsuta var. fosteriorum 
Aiphanes hirsuta var. hirsuta 
Aiphanes hirsuta var. intermedia 
Aiphanes hirsuta var. kalbreyeri 
Aiphanes horridaCoyure Palm
Aiphanes leiostachys 
Aiphanes lindeniana 
Aiphanes linearis 
Aiphanes macroloba 
Aiphanes minimaMacaw Palm
Aiphanes parvifolia 
Aiphanes pilaris 
Aiphanes simplex 
Aiphanes spicata 
Aiphanes tricuspidata 
Aiphanes ulei 
Aiphanes verrucosa 
Aiphanes weberbaueri 
Allagoptera arenariaRestinga Palm
Allagoptera brevicalyx 
Allagoptera campestris 
Allagoptera leucocalyx 
Alloschmidia glabrata 
Alsmithia longipes 
Ammandra decasperma 
Aphandra nataliaTagua Palm
Archontophoenix alexandraeKing Palm
Archontophoenix cunninghamianaBangalow Palm
Archontophoenix maximaWalsh River Palm
Archontophoenix myolensisMyola King Palm
Archontophoenix purpureaMt. Lewis King Palm
Archontophoenix tuckeriPeach Creek Palm
Areca abdulrahmanii 
Areca ahmadii 
Areca andersonii 
Areca arundinacea 
Areca brachypoda 
Areca caliso 
Areca camarinensis 
Areca catechuBetel Nut Palm
Areca catechu var. dwarfDwarf Betel Nut Palm
Areca celebica 
Areca chaiana 
Areca concinna 
Areca congesta 
Areca costulata 
Areca dayung 
Areca furcata 
Areca guppyanaSacred Palm
Areca hutchinsoniana 
Areca insignis var. insignis 
Areca insignis var. moorei 
Areca ipot 
Areca jobiensis 
Areca jugahpunya 
Areca kinabaluensis 
Areca klingkangensis 
Areca laosensisChocolate Palm
Areca ledermanniana 
Areca macrocalyxHighland Betel Nut Palm
Areca macrocarpa 
Areca minuta 
Areca montana 
Areca multifida 
Areca nannospadix 
Areca nigasolu 
Areca novohibernica 
Areca oxycarpa 
Areca parens 
Areca rechingeriana 
Areca rheophytica 
Areca ridleyana 
Areca rostrata 
Areca salomonensis 
Areca subacaulis 
Areca torulo 
Areca triandraTriandra palm
Areca tunku 
Areca vestiaria - maroonMaroon Collar Palm
Areca vestiaria - orangeOrange Collar Palm
Areca vidaliana 
Areca warburgiana 
Areca whitfordii 
Arenga australasicaAustralian Sugar Palm
Arenga brevipes 
Arenga caudataMiniature Sugar Palm
Arenga engleriDwarf sugar palm
Arenga hastata 
Arenga hookerianaHookers Fish Tail Palm
Arenga listeri 
Arenga longicarpa 
Arenga micranthaTibetan Sugar Palm
Arenga microcarpaAren Sagu
Arenga mindorensis 
Arenga nana 
Arenga obtusifolia 
Arenga pinnataSugar Palm
Arenga porphyrocarpa 
Arenga retroflorescens 
Arenga tremulaPhilippine Dwarf Sugar Palm
Arenga undulatifoliaAren Gelora
Arenga westerhoutiiWesterhout's Sugar Palm
Arenga wightii 
Asterogyne guianensis 
Asterogyne martianaPata de Gallo
Asterogyne ramosa 
Asterogyne spicataPalmito Palm
Asterogyne yaracuyense 
Astrocaryum acaule 
Astrocaryum aculeatissimumBrejaúva Palm
Astrocaryum aculeatum 
Astrocaryum alatumCoquillo Palm
Astrocaryum campestre 
Astrocaryum carnosum 
Astrocaryum chambira 
Astrocaryum chonta 
Astrocaryum ciliatum 
Astrocaryum confertum 
Astrocaryum faranae 
Astrocaryum farinosum 
Astrocaryum ferrugineum 
Astrocaryum giganteum 
Astrocaryum gratum 
Astrocaryum gynacanthum 
Astrocaryum huaimi 
Astrocaryum huicungo 
Astrocaryum jauari 
Astrocaryum javarense 
Astrocaryum macrocalyx 
Astrocaryum malybo 
Astrocaryum mexicanum 
Astrocaryum minus 
Astrocaryum murumuru 
Astrocaryum paramaca 
Astrocaryum perangustatum 
Astrocaryum rodriguesii 
Astrocaryum sciophilum 
Astrocaryum scopatum 
Astrocaryum sociale 
Astrocaryum standleyanumMocora Palm
Astrocaryum triandrum 
Astrocaryum ulei 
Astrocaryum urostachys 
Astrocaryum vulgareTucuma Palm
Attalea allenii 
Attalea amygdalina 
Attalea amylacea 
Attalea anisitsiana 
Attalea apoda 
Attalea attaleoides 
Attalea barreirensis 
Attalea bassleriana 
Attalea blepharopus 
Attalea brasiliensis 
Attalea brejinhoensis 
Attalea butyraceaYagua Palm
Attalea camopiensis 
Attalea cephalotus 
Attalea cohuneCohune palm
Attalea colenda 
Attalea compta 
Attalea crassispatha 
Attalea cuatrecasana 
Attalea dahlgreniana 
Attalea degranvillei 
Attalea dubiaBacuaçu Palm
Attalea eichleri 
Attalea exigua 
Attalea fairchildensis 
Attalea funiferaPiassaba Palm
Attalea geraensisIndaiá Palm
Attalea guacuyule 
Attalea guianensis 
Attalea hoehnei 
Attalea huebneri 
Attalea humilis 
Attalea iguadummat 
Attalea insignis 
Attalea kewensis 
Attalea lauromuelleriana 
Attalea luetzelburgii 
Attalea macrocarpa 
Attalea macrolepis 
Attalea magdalenica 
Attalea maracaibensis 
Attalea maripaMaripa Palm
Attalea maripensis 
Attalea microcarpa 
Attalea moorei 
Attalea nucifera 
Attalea oleiferaAndaiá Palm
Attalea osmantha 
Attalea peruviana 
Attalea phalerataUrucuri Palm
Attalea phalerata var. concinna 
Attalea pindobassu 
Attalea plowmanii 
Attalea princeps 
Attalea racemosa 
Attalea rhynchocarpa 
Attalea rostrata 
Attalea salazarii 
Attalea salvadorensis 
Attalea seabrensis 
Attalea septuagenata 
Attalea speciosaCusi palm
Attalea spectabilis 
Attalea tessmannii 
Attalea vitrivir 
Attalea weberbaueri 
Attalea wesselsboeri 
Attalea × minarum (A. compta × A. vitrivir) 
Attalea × piassabossu (A. funifera × A. oleifera) 
Attalea × teixeirana (A. eichleri × A. speciosa) 
Attalea × voeksii (A. funifera × A. humilis) 
Bactris acanthocarpa var. acanthocarpa 
Bactris acanthocarpa var. exscapa 
Bactris acanthocarpa var. intermedia 
Bactris acanthocarpa var. trailiana 
Bactris acanthocarpoides 
Bactris ana-juliae 
Bactris aubletiana 
Bactris bahiensis 
Bactris balanophora 
Bactris barronis 
Bactris bidentula 
Bactris bifida 
Bactris brongniartiiBango Palm
Bactris campestris 
Bactris caryotifolia 
Bactris caudata 
Bactris charnleyae 
Bactris chaveziae 
Bactris coloniata 
Bactris coloradonis 
Bactris concinna 
Bactris constanciae 
Bactris corossilla 
Bactris cubensis 
Bactris cuspidata 
Bactris dianeura 
Bactris elegans 
Bactris faucium 
Bactris ferruginea 
Bactris fissifrons 
Bactris gasipaesPeach Palm
Bactris gasipaes var. chichagui 
Bactris gastoniana 
Bactris glandulosaGold Palm
Bactris glandulosa var. baileyana 
Bactris glassmanii 
Bactris glaucescens 
Bactris gracilior 
Bactris grayumii 
Bactris guineensisCoyolito Palm
Bactris halmoorei 
Bactris hatschbachii 
Bactris herrerana 
Bactris hirta var. hirta 
Bactris hirta var. jenmanii 
Bactris hirta var. lakoi 
Bactris hirta var. pectinata 
Bactris hondurensis 
Bactris horridispatha 
Bactris jamaicana 
Bactris killipii 
Bactris kunorum 
Bactris longiseta 
Bactris macroacantha 
Bactris major var. infesta 
Bactris major var. major 
Bactris major var. socialis 
Bactris maraja var. chaetospatha 
Bactris maraja var. juruensis 
Bactris maraja var. maraja 
Bactris maraja var. trichospatha 
Bactris martiana 
Bactris mexicana var. mexicana 
Bactris mexicana var. trichophylla 
Bactris militaris var. militaris 
Bactris militaris var. neomilitaris 
Bactris oligocarpa 
Bactris panamensis 
Bactris pickelii 
Bactris pilosa 
Bactris pliniana 
Bactris plumeriana 
Bactris polystachya 
Bactris ptariana 
Bactris rhaphidacantha 
Bactris riparia 
Bactris rostrata 
Bactris schultesii 
Bactris setiflora 
Bactris setosaJucum palm
Bactris setulosa 
Bactris simplicifrons 
Bactris soeiroana 
Bactris sphaerocarpa 
Bactris syagroides 
Bactris tefensis 
Bactris timbuiensis 
Bactris tomentosa 
Bactris turbinocarpa 
Bactris vulgaris 
Bactris × moorei (B. acanthocarpa × B. oligoclada) 
Balaka brachychlamys 
Balaka longirostris 
Balaka macrocarpa 
Balaka microcarpaSpear Palm
Balaka minuta 
Balaka pauciflora 
Balaka samoensis 
Balaka seemanniiSeemann's Palm
Balaka streptostachys 
Balaka tahitensis 
Balaka tuasivica 
Barcella odora 
Basselinia deplanchei 
Basselinia favieri 
Basselinia gracilis 
Basselinia humboldtiana 
Basselinia iterata 
Basselinia pancheriBlack Basselinia
Basselinia porphyrea 
Basselinia sordida 
Basselinia tomentosa 
Basselinia velutina 
Basselinia vestita 
Beccariophoenix alfrediiHigh Plateaux Beccariophoenix
Beccariophoenix madagascariensisGiant Window Palm
Bentinckia condapannaLord Bentinck's Palm
Bentinckia nicobaricaNicobar Palm
Bismarckia nobilis sp. silverSilver Bismarck Palm
Borassodendron borneense 
Borassodendron machadonis 
Borassus aethiopumPalmyra palm
Borassus flabelliferPalmyra palm
Borassus heineanus 
Borassus madagascariensisMadagascar Palmyra Palm
Borassus sambiranensisSambirano Palmyra Palm
Brahea aculeata 
Brahea armataBlue Hesper Palm
Brahea brandegeeiSan José Hesper Palm
Brahea calcareaWhite Rock Palm
Brahea decumbensMexican Dwarf Blue Palm
Brahea dulcis sp. blueBlue Rock Palm
Brahea edulisGuadalupe Palm
Brahea mooreiDwarf Rock Palm
Brahea pimo 
Brahea salvadorensis 
Brahea sarukhanii 
Brahea sp. New SilverPossibly: Erythea armata var. microcarpa
Brassiophoenix drymophloeoides 
Brassiophoenix schumannii 
Brongniartikentia lanuginosa 
Brongniartikentia vaginata 
Burretiokentia dumasii 
Burretiokentia grandiflora 
Burretiokentia hapala 
Burretiokentia koghiensis 
Burretiokentia vieillardii 
Butia archeriDwarf Jelly Palm
Butia campicola 
Butia capitataJelly Palm
Butia capitata var. odorataSouthern Jelly Palm
Butia eriospathaWoolly Jelly Palm
Butia exospadix 
Butia leptospatha 
Butia marmorii 
Butia microspadixDwarf Wooly Jelly Palm
Butia paraguayensisDwarf Yatay Palm
Butia purpurascensPurple Yatay Palm
Butia stolonifera 
Butia yatayYatay Palm
Calamus acanthochlamys 
Calamus acanthophyllus 
Calamus acanthospathusRattan Palm
Calamus acidus 
Calamus acuminatus 
Calamus adspersus 
Calamus aggregatus 
Calamus aidae 
Calamus albus 
Calamus altiscandens 
Calamus amplijugus 
Calamus andamanicus 
Calamus anomalus 
Calamus arborescens 
Calamus arfakianus 
Calamus aruensisHollrung's Rattan Palm
Calamus arugda 
Calamus ashtonii 
Calamus asperrimus 
Calamus australis 
Calamus austroguangxiensis 
Calamus axillaris 
Calamus bacularis 
Calamus balerensis 
Calamus balingensis 
Calamus bankae 
Calamus baratangensis 
Calamus barbatus 
Calamus basui 
Calamus batanensis 
Calamus benkulensis 
Calamus bicolor 
Calamus billitonensis 
Calamus bimaniferus 
Calamus blumei 
Calamus boniensis 
Calamus bousigonii var. bousigonii 
Calamus bousigonii var. smitinandii 
Calamus brandisii 
Calamus brassii 
Calamus brevifolius 
Calamus burckianus 
Calamus burkillianus 
Calamus buroensis 
Calamus caesius 
Calamus caryotoidesFishtail Lawyer Cane
Calamus castaneusMountain Nypa
Calamus cawa 
Calamus ceratophorus 
Calamus ciliaris 
Calamus cockburnii 
Calamus compsostachys 
Calamus comptus 
Calamus concinnusCoastal Rattan
Calamus congestiflorus 
Calamus conirostris 
Calamus conjugatus 
Calamus convallium 
Calamus corneri 
Calamus corrugatus 
Calamus crassifolius 
Calamus cumingianus 
Calamus curag 
Calamus cuthbertsonii 
Calamus dasyacanthus 
Calamus deerratus 
Calamus delessertianus 
Calamus delicatulus 
Calamus densiflorus 
Calamus depauperatus 
Calamus dianbaiensis 
Calamus didymocarpus 
Calamus diepenhorstii var. diepenhorstii 
Calamus diepenhorstii var. exulans 
Calamus diepenhorstii var. major 
Calamus digitatus 
Calamus dilaceratus 
Calamus dimorphacanthus var. benguetensis 
Calamus dimorphacanthus var. dimorphacanthus 
Calamus dimorphacanthus var. halconensis 
Calamus dimorphacanthus var. montalbanicus 
Calamus dimorphacanthus var. zambalensis 
Calamus dioicus 
Calamus discolor var. discolor 
Calamus discolor var. negrosensis 
Calamus distentus 
Calamus divaricatus var. contrarius 
Calamus divaricatus var. divaricatus 
Calamus dongnaiensis 
Calamus doriaei 
Calamus dransfieldii 
Calamus egregius 
Calamus elmerianus 
Calamus elopurensis 
Calamus endauensis 
Calamus epetiolaris 
Calamus equestris 
Calamus erectus 
Calamus erinaceusHedgehog Rattan
Calamus erioacanthus 
Calamus essigii 
Calamus exilis 
Calamus eximius 
Calamus faberi 
Calamus farinosus 
Calamus fertilis 
Calamus filipendulus 
Calamus filispadix 
Calamus fimbriatus 
Calamus fissijugatus 
Calamus flabellatus 
Calamus flagellum var. flagellum 
Calamus flagellum var. furvifurfuraceus 
Calamus floribundus 
Calamus formosanus 
Calamus foxworthyi 
Calamus fuscus 
Calamus gamblei 
Calamus gibbsianus 
Calamus godefroyi 
Calamus gogolensis 
Calamus gonospermus 
Calamus gracilis 
Calamus graminosus 
Calamus grandifolius 
Calamus gregisectus 
Calamus griseus 
Calamus guangxiensis 
Calamus guruba 
Calamus halmaherensis 
Calamus harmandii 
Calamus hartmannii 
Calamus helferianus 
Calamus henryanus 
Calamus hepburnii 
Calamus heteracanthus 
Calamus heteroideus 
Calamus hispidulus 
Calamus holttumii 
Calamus hookerianus 
Calamus hoplites 
Calamus humboldtianus 
Calamus hypertrichosus 
Calamus hypoleucus 
Calamus impar 
Calamus inops 
Calamus insignis var. insignis 
Calamus insignis var. longispinosus 
Calamus insignis var. robustus 
Calamus interruptus 
Calamus javensis 
Calamus jenningsianus 
Calamus kandariensis 
Calamus karnatakensis 
Calamus karuensis 
Calamus keyensis 
Calamus khasianus 
Calamus kiahii 
Calamus kingianus 
Calamus kjellbergii 
Calamus klossii 
Calamus koordersianus 
Calamus lacciferus 
Calamus laevigatus var. laevigatus 
Calamus laevigatus var. mucronatus 
Calamus laevigatus var. serpentinus 
Calamus lakshmanae 
Calamus lambirensis 
Calamus laoensis 
Calamus latifolius 
Calamus latispinus 
Calamus lauterbachii 
Calamus laxissimus 
Calamus ledermannianus 
Calamus leiocaulis 
Calamus leloi 
Calamus leptospadix 
Calamus leptostachys 
Calamus lobbianus 
Calamus longipinna 
Calamus longisetus 
Calamus longispathus 
Calamus luridus 
Calamus macgregorii 
Calamus macrochlamys 
Calamus macrorhynchus 
Calamus macrosphaerion 
Calamus maiadum 
Calamus malawaliensis 
Calamus manan 
Calamus manillensis 
Calamus marginatus 
Calamus maritimus 
Calamus mattanensis 
Calamus maturbongsii 
Calamus mayrii 
Calamus megaphyllus 
Calamus melanacanthus 
Calamus melanochrous 
Calamus melanoloma 
Calamus melanorhynchus 
Calamus merrillii var. merrillii 
Calamus merrillii var. merrittianus 
Calamus merrillii var. nanga 
Calamus mesilauensis 
Calamus metzianus 
Calamus micranthus 
Calamus microcarpus var. diminutus 
Calamus microcarpus var. longiocrea 
Calamus microcarpus var. microcarpus 
Calamus microsphaerion var. microsphaerion 
Calamus microsphaerion var. spinosior 
Calamus minahassae 
Calamus mindorensis 
Calamus minutus 
Calamus mitis 
Calamus modestus 
Calamus mogeae 
Calamus moorhousei 
Calamus moseleyanus 
Calamus moszkowskianus 
Calamus moti 
Calamus muelleri 
Calamus multinervis 
Calamus multinervis var. menglaensis 
Calamus multinervis var. multinervis 
Calamus multisetosus 
Calamus multispicatus 
Calamus muricatus 
Calamus myriacanthus 
Calamus myrianthus 
Calamus myriocarpus 
Calamus myriocladus 
Calamus nagbettai 
Calamus nambariensis 
Calamus nannostachys 
Calamus nanodendron 
Calamus neelagiricus 
Calamus nematospadix 
Calamus nicobaricus 
Calamus nielsenii 
Calamus nigricans 
Calamus obovoideus 
Calamus occidentalis 
Calamus oligostachys 
Calamus opacus 
Calamus optimus 
Calamus ornatus var. ornatus 
Calamus ornatus var. pulverulentus 
Calamus orthostachyus 
Calamus ovoideus 
Calamus oxleyanus var. montanus 
Calamus oxleyanus var. oxleyanus 
Calamus oxycarpus 
Calamus pachypus 
Calamus pachystachys 
Calamus pachystemonus 
Calamus padangensis 
Calamus palustris var. malaccensis 
Calamus palustris var. palustris 
Calamus pandanosmus 
Calamus papuanus 
Calamus paspalanthus 
Calamus paucijugus 
Calamus paulii 
Calamus pedicellatus 
Calamus penicillatus 
Calamus perakensis var. crassus 
Calamus perakensis var. niger 
Calamus perakensis var. perakensis 
Calamus peregrinus 
Calamus pholidostachys 
Calamus pilosellus 
Calamus pilossisimus 
Calamus pisicarpus 
Calamus platyacanthoides 
Calamus platyspathus 
Calamus plicatus 
Calamus poensis 
Calamus pogonacanthus 
Calamus poilanei 
Calamus polycladus 
Calamus polydesmus 
Calamus polystachys 
Calamus praetermissus 
Calamus prasinus 
Calamus prattianus 
Calamus pseudofeanus 
Calamus pseudomollis 
Calamus pseudorivalis 
Calamus pseudotenuis 
Calamus pseudoulur 
Calamus pseudozebrinus 
Calamus psilocladus 
Calamus pulaiensis 
Calamus pulchellus 
Calamus pulcher 
Calamus pycnocarpus 
Calamus pygmaeus 
Calamus quinquenervius 
Calamus quinquesetinervius 
Calamus radiatus 
Calamus radicalisVicious Hairy Mary
Calamus radulosus 
Calamus ramulosus 
Calamus reinwardtii 
Calamus reticulatus 
Calamus reyesianus 
Calamus rhabdocladus 
Calamus rheedei 
Calamus rhomboideus 
Calamus rhytidomus 
Calamus ridleyanus 
Calamus rivalis 
Calamus robinsonianus 
Calamus rotang 
Calamus rudentumLizard Rattan
Calamus rugosus 
Calamus rumphii 
Calamus ruvidus 
Calamus sabalensis 
Calamus sabensis 
Calamus salicifolius 
Calamus samian 
Calamus sarawakensis 
Calamus scabridulus 
Calamus scabrispathus 
Calamus schaeferianus 
Calamus schistoacanthus 
Calamus schlechterianus 
Calamus scipionum 
Calamus scleracanthus 
Calamus sedens 
Calamus semierectus 
Calamus semoi 
Calamus senalingensis 
Calamus sepikensis 
Calamus serrulatus 
Calamus sessilifolius 
Calamus setulosus 
Calamus shendurunii 
Calamus siamensisThai Rattan Palm
Calamus simplex 
Calamus simplicifolius 
Calamus siphonospathus var. dransfieldii 
Calamus siphonospathus var. farinosus 
Calamus siphonospathus var. oligolepis 
Calamus siphonospathus var. polylepis 
Calamus siphonospathus var. siphonospathus 
Calamus siphonospathus var. sublaevis 
Calamus solitarius 
Calamus sordidus 
Calamus speciosissimus 
Calamus spectabilis 
Calamus spectatissimus 
Calamus spinifolius 
Calamus spinulinervis 
Calamus stoloniferus 
Calamus suaveolens 
Calamus subinermis 
Calamus sumbawensis 
Calamus symphysipus 
Calamus tanakadatei 
Calamus tapa 
Calamus temburongii 
Calamus temii 
Calamus tenompokensis 
Calamus tenuis 
Calamus tetradactyloides 
Calamus tetradactylus 
Calamus thwaitesii 
Calamus thysanolepis var. polylepis 
Calamus thysanolepis var. thysanolepis 
Calamus timorensis 
Calamus toli-toliensis 
Calamus tomentosus 
Calamus trachycoleus 
Calamus travancoricus 
Calamus trispermus 
Calamus tumidus 
Calamus ulur 
Calamus unifarius var. pentong 
Calamus unifarius var. unifarius 
Calamus usitatus 
Calamus vattayila 
Calamus vestitusGuadalcanal Rattan Palm
Calamus vidalianus 
Calamus viminalisBitter Rattan Palm
Calamus vinosus 
Calamus viridispinus var. sumatranus 
Calamus viridispinus var. viridispinus 
Calamus viridissimus 
Calamus vitiensis 
Calamus wailong 
Calamus walkeri 
Calamus wanggaii 
Calamus warburgii 
Calamus wari-wariensis 
Calamus whitmorei 
Calamus wightii 
Calamus winklerianus 
Calamus wuliangshanensis var. sphaerocarpus 
Calamus wuliangshanensis var. wuliangshanensis 
Calamus yuangchunensis 
Calamus zebrinus 
Calamus zeylanicus 
Calamus zollingeri 
Calamus zonatus 
Calospatha scortechinii 
Calyptrocalyx albertisianusSunset Palm
Calyptrocalyx amoenus 
Calyptrocalyx arfakianus 
Calyptrocalyx awa 
Calyptrocalyx caudiculatus 
Calyptrocalyx doxanthus 
Calyptrocalyx elegans 
Calyptrocalyx flabellatus 
Calyptrocalyx forbesii 
Calyptrocalyx geonomiformis 
Calyptrocalyx hollrungiiHollrung Palm
Calyptrocalyx julianettii 
Calyptrocalyx lauterbachianus 
Calyptrocalyx laxiflorus 
Calyptrocalyx lepidotus 
Calyptrocalyx leptostachys 
Calyptrocalyx merrillianus 
Calyptrocalyx micholitziiMicholitz's Palm
Calyptrocalyx multifidus 
Calyptrocalyx pachystachys 
Calyptrocalyx pauciflorus 
Calyptrocalyx polyphyllus 
Calyptrocalyx pusillus 
Calyptrocalyx sessiliflorus 
Calyptrocalyx spicatusMaluku Kentia Palm
Calyptrocalyx yamutumene 
Calyptrogyne allenii 
Calyptrogyne anomala 
Calyptrogyne condensata 
Calyptrogyne costatifrons var. costatifrons 
Calyptrogyne ghiesbreghtianaVampire Palm
Calyptrogyne herrerae 
Calyptrogyne kunorum 
Calyptrogyne pubescens 
Calyptrogyne trichostachys 
Calyptronoma occidentalis 
Calyptronoma plumeriana 
Calyptronoma rivalis 
Campecarpus fulcitusNew Caledonian Stilt Root Palm
Carpentaria acuminataCarpentaria Palm
Carpoxylon macrospermumAneityum Palm
Caryota bacsonensis 
Caryota cumingii 
Caryota kiriwongensisKiriwong Fishtail Palm
Caryota maximaMountain Fish Tail Palm
Caryota maxima sp. himalayaMountain Fish Tail
Caryota mitisClustered Fishtail Palm
Caryota monostachya 
Caryota noBorneo Fishtail Palm
Caryota obtusaGiant Fishtail Palm
Caryota ochlandraChinese Fishtail Palm
Caryota ophiopellisSnakeskin Fishtail Palm
Caryota rumphianaAustralian Fishtail
Caryota sympetala 
Caryota urensJaggery Palm
Caryota zebrinaZebra Fishtail Palm
Ceratolobus concolor 
Ceratolobus discolor 
Ceratolobus glaucescens 
Ceratolobus kingianus 
Ceratolobus pseudoconcolor 
Ceratolobus subangulatus 
Ceroxylon alpinumAndean Wax Palm
Ceroxylon alpinum var. ecuadorense 
Ceroxylon amazonicumAmazon Wax Palm
Ceroxylon ceriferum 
Ceroxylon echinulatumPumbo Wax Palm
Ceroxylon parvifronsGolden Wax Palm
Ceroxylon parvumDwarf Wax Palm
Ceroxylon quindiuenseQuindio Wax Palm
Ceroxylon sasaimae 
Ceroxylon ventricosumEcuadorian Wax Palm
Ceroxylon vogelianumVogel Wax Palm
Ceroxylon weberbaueri 
Chamaedorea adscendensVelvet Palm
Chamaedorea allenii 
Chamaedorea alternans 
Chamaedorea amabilis 
Chamaedorea anemophila 
Chamaedorea angustisecta 
Chamaedorea arenbergiana 
Chamaedorea atrovirens 
Chamaedorea benziei 
Chamaedorea binderi 
Chamaedorea brachyclada 
Chamaedorea brachypoda 
Chamaedorea carchensis 
Chamaedorea castillo-montii 
Chamaedorea cataractarumCascade Palm
Chamaedorea christinae 
Chamaedorea correae 
Chamaedorea costaricanaCosta Rica Bamboo Palm
Chamaedorea crucensis 
Chamaedorea dammeriana 
Chamaedorea deckeriana 
Chamaedorea deneversiana 
Chamaedorea elatior 
Chamaedorea elegansParlor Palm
Chamaedorea ernesti-augusti 
Chamaedorea falcifera 
Chamaedorea foveata 
Chamaedorea fractiflexa 
Chamaedorea fragransSangapilla Palm
Chamaedorea frondosa 
Chamaedorea geonomiformis 
Chamaedorea glaucifoliaGlaucous Parlour Palm
Chamaedorea graminifolia 
Chamaedorea guntheriana 
Chamaedorea hodelii 
Chamaedorea hooperiana 
Chamaedorea ibarrae 
Chamaedorea incrustata 
Chamaedorea keelerorum 
Chamaedorea klotzschiana 
Chamaedorea latisecta 
Chamaedorea lehmannii 
Chamaedorea liebmannii 
Chamaedorea linearis 
Chamaedorea lucidifrons 
Chamaedorea macrospadixBamboo Palm
Chamaedorea matae 
Chamaedorea metallicaMetallic palm
Chamaedorea microphylla 
Chamaedorea microspadixBamboo Palm
Chamaedorea moliniana 
Chamaedorea murriensis 
Chamaedorea nationsiana 
Chamaedorea neurochlamys 
Chamaedorea nubium 
Chamaedorea oblongata 
Chamaedorea oreophila 
Chamaedorea pachecoana 
Chamaedorea palmeriana 
Chamaedorea parvifolia 
Chamaedorea parvisecta 
Chamaedorea pauciflora 
Chamaedorea pedunculata 
Chamaedorea pinnatifrons 
Chamaedorea piscifolia 
Chamaedorea pittieri 
Chamaedorea plumosa 
Chamaedorea pochutlensis 
Chamaedorea ponderosa 
Chamaedorea pumila 
Chamaedorea pygmaea 
Chamaedorea queroana 
Chamaedorea radicalisHardy Parlour Palm
Chamaedorea recurvata 
Chamaedorea rhizomatosa 
Chamaedorea ricardoi 
Chamaedorea rigida 
Chamaedorea robertii 
Chamaedorea rojasiana 
Chamaedorea rosibeliae 
Chamaedorea rossteniorum 
Chamaedorea sartori 
Chamaedorea scheryi 
Chamaedorea schiedeana 
Chamaedorea schippii 
Chamaedorea seifriziiSeifriz Bamboo Palm
Chamaedorea selvae 
Chamaedorea serpens 
Chamaedorea simplex 
Chamaedorea skutchii 
Chamaedorea smithii 
Chamaedorea stenocarpa 
Chamaedorea stolonifera 
Chamaedorea stricta 
Chamaedorea subjectifolia 
Chamaedorea tenerrima 
Chamaedorea tepejilotePacaya Palm
Chamaedorea tuerckheimii 
Chamaedorea undulatifolia 
Chamaedorea verapazensis 
Chamaedorea verecunda 
Chamaedorea volcanensis 
Chamaedorea vulgata 
Chamaedorea warscewiczii 
Chamaedorea whitelockiana 
Chamaedorea woodsoniana 
Chamaedorea zamorae 
Chamaerops humilisMediterranean Fan Palm
Chamaerops humilis var. argenteaBlue Med. Fan Palm
Chambeyronia lepidota 
Chambeyronia macrocarpaHouailou Red Leaf Palm
Chelyocarpus chucoRound Leaf Palm
Chelyocarpus dianeurus 
Chelyocarpus repens 
Chelyocarpus ulei 
Chuniophoenix hainanensisHainan Fan Palm
Chuniophoenix nana 
Clinosperma bracteale 
Clinostigma carolinense 
Clinostigma collegarum 
Clinostigma exorrhizum 
Clinostigma gronophyllum 
Clinostigma haerestigma 
Clinostigma harlandii 
Clinostigma onchorhynchum 
Clinostigma ponapense 
Clinostigma samoense 
Clinostigma savoryanumBonin Islands Palm
Clinostigma warburgii 
Coccothrinax acunana 
Coccothrinax alexandri var. alexandri 
Coccothrinax alexandri var. nitida 
Coccothrinax argentataSilver Thatch Palm
Coccothrinax argenteaHispaniola Silver Thatch Palm
Coccothrinax baracoensis 
Coccothrinax barbadensisSilver Thatch Palm
Coccothrinax bermudezii 
Coccothrinax borhidianaBorhidis Guano Palm
Coccothrinax boschiana 
Coccothrinax camagueyana 
Coccothrinax clarensis var. brevifolia 
Coccothrinax clarensis var. clarensis 
Coccothrinax clarensis var. perrigida 
Coccothrinax concolor 
Coccothrinax crinitaOld Man Palm
Coccothrinax crinita var. brevicrinis 
Coccothrinax crinita var. crinita 
Coccothrinax cupularis 
Coccothrinax ekmanii 
Coccothrinax elegans 
Coccothrinax fagildei 
Coccothrinax fragrans 
Coccothrinax garciana 
Coccothrinax gracilisHispaniola Silver Palm
Coccothrinax guantanamensis 
Coccothrinax gundlachii 
Coccothrinax hioramii 
Coccothrinax inaguensis 
Coccothrinax jamaicensis 
Coccothrinax leonis 
Coccothrinax littoralis 
Coccothrinax macroglossa 
Coccothrinax microphylla 
Coccothrinax miraguama var. arenicola 
Coccothrinax miraguama var. havanensis 
Coccothrinax miraguama var. miraguama 
Coccothrinax miraguama var. roseocarpa 
Coccothrinax moaensis 
Coccothrinax montana 
Coccothrinax munizii 
Coccothrinax muricata 
Coccothrinax nipensis 
Coccothrinax orientalis 
Coccothrinax pauciramosa 
Coccothrinax proctoriiProctor's Silver Palm
Coccothrinax pseudorigida 
Coccothrinax pumila 
Coccothrinax readii 
Coccothrinax rigida 
Coccothrinax salvatoris var. loricata 
Coccothrinax salvatoris var. salvatoris 
Coccothrinax saxicola 
Coccothrinax scoparia 
Coccothrinax spissaHispaniola Belly Palm
Coccothrinax torrida 
Coccothrinax trinitensis 
Coccothrinax victorini 
Coccothrinax yunquensis 
Coccothrinax yuraguana 
Cocos nucifera 
Colpothrinax aphanopetala 
Colpothrinax cookii 
Colpothrinax wrightii 
Copernicia albaCaranday Palm
Copernicia baileyanaYarey Palm
Copernicia berteroana 
Copernicia brittonorum 
Copernicia cowellii 
Copernicia curbeloi 
Copernicia curtissii 
Copernicia ekmanii 
Copernicia fallaensis 
Copernicia gigas 
Copernicia glabrescens var. glabrescens 
Copernicia glabrescens var. ramosissima 
Copernicia hospita 
Copernicia humicola 
Copernicia longiglossa 
Copernicia macroglossaCuban Petticoat Palm
Copernicia molineti 
Copernicia prunifera 
Copernicia rigidaJata Palm
Copernicia roigii 
Copernicia tectorum 
Copernicia yarey 
Copernicia × burretiana (C. hospita × C. macroglossa) 
Copernicia × escarzana (C. hospita × C. macroglossa) 
Copernicia × occidentalis (C. brittonanum × C. hospita) 
Copernicia × shaferi (C. cowellii × C. hospita) 
Copernicia × sueroana (C. hospita × C. rigida) 
Copernicia × textilis (C. baileyana × C. hospita) 
Copernicia × vespertilionum (C. gigas × C. rigida) 
Corypha griffithiana 
Corypha lecomteiLecomte Palm
Corypha microclada 
Corypha taliera 
Corypha umbraculiferaTalipot Palm
Corypha utanBuri Palm
Cryosophila bartlettii 
Cryosophila cookii 
Cryosophila grayumii 
Cryosophila guagara 
Cryosophila kalbreyeri var. cogolloi 
Cryosophila kalbreyeri var. kalbreyeri 
Cryosophila macrocarpa 
Cryosophila nana 
Cryosophila stauracanthaRoot Spine Palm
Cryosophila warscewicziiGuáguara Palm
Cryosophila williamsii 
Cyphokentia macrostachya 
Cyphophoenix elegans 
Cyphophoenix nuceleLifou Palm
Cyphosperma balansae 
Cyphosperma tanga 
Cyphosperma trichospadix 
Cyphosperma voutmelense 
Cyrtostachys brassii 
Cyrtostachys compsoclada 
Cyrtostachys elegans 
Cyrtostachys glauca 
Cyrtostachys kisu 
Cyrtostachys ledermanniana 
Cyrtostachys loriae 
Cyrtostachys microcarpa 
Cyrtostachys peekeliana 
Cyrtostachys phanerolepis 
Cyrtostachys rendaSealing Wax Palm
Daemonorops acamptostachys 
Daemonorops acehensis 
Daemonorops affinis 
Daemonorops angustifoliaWater Rattan Palm
Daemonorops aruensis 
Daemonorops asteracantha 
Daemonorops atra 
Daemonorops aurea 
Daemonorops banggiensis 
Daemonorops beguinii 
Daemonorops binnendijkii 
Daemonorops brachystachys 
Daemonorops calapparia 
Daemonorops calicarpa 
Daemonorops clemensiana 
Daemonorops collarifera 
Daemonorops confusa 
Daemonorops crinita 
Daemonorops cristata 
Daemonorops curranii 
Daemonorops depressiuscula 
Daemonorops didymophylla 
Daemonorops draco 
Daemonorops dracuncula 
Daemonorops dransfieldii 
Daemonorops elongata 
Daemonorops fissa 
Daemonorops forbesii 
Daemonorops formicaria 
Daemonorops geniculata 
Daemonorops gracilipes 
Daemonorops gracilis 
Daemonorops grandis 
Daemonorops hirsuta 
Daemonorops horrida 
Daemonorops ingens 
Daemonorops jenkinsianaMajor Jenkins Palm
Daemonorops korthalsii 
Daemonorops kunstleri 
Daemonorops kurziana 
Daemonorops lamprolepis 
Daemonorops leptopus 
Daemonorops lewisianaLewis' Rattan Palm
Daemonorops loheriana 
Daemonorops longipes 
Daemonorops longispatha 
Daemonorops longispinosa 
Daemonorops longistipes 
Daemonorops macrophylla 
Daemonorops macroptera 
Daemonorops maculata 
Daemonorops manii 
Daemonorops margaritae var. margaritae 
Daemonorops margaritae var. palawanica 
Daemonorops megalocarpa 
Daemonorops melanochaetesChocolate Rattan
Daemonorops micracantha 
Daemonorops microcarpa 
Daemonorops microstachys 
Daemonorops mirabilis 
Daemonorops mollis 
Daemonorops mollispina 
Daemonorops monticola 
Daemonorops nigra 
Daemonorops oblata 
Daemonorops oblonga 
Daemonorops ochrolepisSumulid Rattan Palm
Daemonorops oligolepis 
Daemonorops oligophylla 
Daemonorops oxycarpa 
Daemonorops pachyrostris 
Daemonorops palembanica 
Daemonorops pannosa 
Daemonorops pedicellaris 
Daemonorops periacantha 
Daemonorops plagiocycla 
Daemonorops poilanei 
Daemonorops polita 
Daemonorops propinqua 
Daemonorops pumila 
Daemonorops rarispinosa 
Daemonorops riedeliana 
Daemonorops robusta 
Daemonorops rubra 
Daemonorops ruptilis var. acaulescens 
Daemonorops ruptilis var. ruptilis 
Daemonorops sabutHair-Spine Rattan
Daemonorops sarasinorum 
Daemonorops scapigera 
Daemonorops schlechteri 
Daemonorops sepal 
Daemonorops serpentina 
Daemonorops siberutensis 
Daemonorops singalana 
Daemonorops sparsiflora 
Daemonorops spectabilis 
Daemonorops stenophylla 
Daemonorops trichroa 
Daemonorops unijuga 
Daemonorops urdanetana 
Daemonorops uschdraweitiana 
Daemonorops verticillaris 
Daemonorops wrightmyoensis 
Deckenia nobilis 
Desmoncus anomalus 
Desmoncus chinantlensis 
Desmoncus cirrhiferus 
Desmoncus costaricensis 
Desmoncus giganteus 
Desmoncus isthmius 
Desmoncus mitis var. leptoclonos 
Desmoncus mitis var. leptospadix 
Desmoncus mitis var. mitis 
Desmoncus mitis var. rurrenabaquensis 
Desmoncus mitis var. tenerrimus 
Desmoncus orthacanthosClimbing Palm
Desmoncus phoenicocarpus 
Desmoncus polyacanthos var. polyacanthos 
Desmoncus polyacanthos var. prunifer 
Desmoncus schippii 
Desmoncus stans 
Dictyocaryum fuscum 
Dictyocaryum lamarckianumAndean Royal Palm
Dictyocaryum ptarianum 
Dictyosperma albumHurricane Palm
Dictyosperma album var. aureumRodrigues Hurricane Palm
Dictyosperma album var. conjugatumRound Island Hurricane Palm
Drymophloeus hentyi 
Drymophloeus lepidotus 
Drymophloeus litigiosus 
Drymophloeus oliviformisSumulid Rattan Palm
Drymophloeus oninensis 
Drymophloeus pachycladus 
Drymophloeus subdistichus 
Drymophloeus whitmeeanus 
Dypsis acaulis 
Dypsis acuminum 
Dypsis albofarinosaWhite Powder Palm
Dypsis ambanjae 
Dypsis ambilaensis 
Dypsis ambositraeAmbositra Palm
Dypsis ampasindavae 
Dypsis andapae 
Dypsis andrianatonga 
Dypsis angusta 
Dypsis angustifolia 
Dypsis ankaizinensis 
Dypsis antanambensis 
Dypsis aquatilis 
Dypsis arenarumSand Palm
Dypsis baroniiSugar Cane Palm
Dypsis basilonga 
Dypsis beentjei 
Dypsis bejofoBrain Seed Palm
Dypsis bernieriana 
Dypsis betamponensis 
Dypsis boivinianaTalanoka Palm
Dypsis bonsaiBonsai Palm
Dypsis bosseri 
Dypsis brevicaulis 
Dypsis cabadaeCabada Palm
Dypsis canaliculata 
Dypsis canescens 
Dypsis carlsmithiiStumpy Palm
Dypsis catatianaCatat's Palm
Dypsis caudata 
Dypsis ceracea 
Dypsis commersoniana 
Dypsis concinna 
Dypsis confusa 
Dypsis cookei 
Dypsis coriacea 
Dypsis corniculata 
Dypsis coursii 
Dypsis crinitaVonitra Palm
Dypsis curtisii 
Dypsis decaryiTriangle Palm
Dypsis decipiensManambe Palm
Dypsis digitata 
Dypsis dransfieldii 
Dypsis elegans 
Dypsis eriostachysSilk Palm
Dypsis faneva 
Dypsis fanjana 
Dypsis fasciculata 
Dypsis fibrosaMountain Vonitra Palm
Dypsis forficifolia 
Dypsis furcata 
Dypsis glabrescens 
Dypsis heteromorpha 
Dypsis heterophylla 
Dypsis hiarakaeSinkiara Palm
Dypsis hildebrandtii 
Dypsis hovomantsinaHovomantsina Palm
Dypsis humbertii 
Dypsis humblotiana 
Dypsis ifanadianae 
Dypsis integra 
Dypsis intermedia 
Dypsis interrupta 
Dypsis jumelleana 
Dypsis laevis 
Dypsis lanceolata Ivovowo Palm
Dypsis lantzeana 
Dypsis lanuginosa 
Dypsis lastellianaRed Neck Palm
Dypsis leptocheilosTeddy Bear Palm
Dypsis ligulata 
Dypsis linearis 
Dypsis lokohensis 
Dypsis louvelii 
Dypsis lucens 
Dypsis lutea 
Dypsis lutescensGolden Cane Palm
Dypsis madagascariensisLucuba Palm
Dypsis mahia 
Dypsis malcomberiMalcomber palm
Dypsis mananjarensis 
Dypsis mangorensis 
Dypsis marojejyi 
Dypsis mcdonaldianaMcDonalds Palm
Dypsis minuta 
Dypsis mirabilis 
Dypsis mocquerysiana 
Dypsis monostachya 
Dypsis montana 
Dypsis moorei 
Dypsis nauseosa 
Dypsis nodiferaOvana Palm
Dypsis nossibensis 
Dypsis occidentalis 
Dypsis onilahensisOnilahy Palm
Dypsis oreophila 
Dypsis oropedionisPlateau Palm
Dypsis ovobontsiraOvobontsira Palm
Dypsis pachyramea 
Dypsis paludosa 
Dypsis pembanaPemba Palm
Dypsis perrieri 
Dypsis pervillei 
Dypsis pilulifera 
Dypsis pinnatifrons 
Dypsis plurisecta 
Dypsis poivreana 
Dypsis prestonianaTavilo Palm
Dypsis procera 
Dypsis psammophilaWhite Sand Palm
Dypsis pulchella 
Dypsis pumila 
Dypsis pusilla 
Dypsis ramentacea 
Dypsis remotiflora 
Dypsis rivularisSari Palm
Dypsis sahanofensisSahanofo Palm
Dypsis sainteluceiSainte-Luce Palm
Dypsis sanctaemariaeSainte-Marie Palm
Dypsis scandens 
Dypsis schatzii 
Dypsis scottianaRaosy Palm
Dypsis serpentina 
Dypsis simianensis 
Dypsis singularis 
Dypsis soanieranaeSoanierana Palm
Dypsis spicata 
Dypsis tanalensis 
Dypsis tenuissima 
Dypsis thermarum 
Dypsis thiryanaTsinkiara Palm
Dypsis thouarsiana 
Dypsis tokoravina 
Dypsis trapezoidea 
Dypsis tsaratananensis 
Dypsis tsaravoasiraBeragoka Palm
Dypsis turkii 
Dypsis utilis 
Dypsis viridis 
Elaeis guineensisAfrican Oil Palm
Elaeis oleiferaAmerican Oil Palm
Eleiodoxa conferta 
Eremospatha barendii 
Eremospatha cabrae 
Eremospatha cuspidata 
Eremospatha dransfieldii 
Eremospatha haullevilleana 
Eremospatha hookeri 
Eremospatha laurentii 
Eremospatha macrocarpa 
Eremospatha quinquecostulata 
Eremospatha tessmanniana 
Eremospatha wendlandiana 
Eugeissona ambigua 
Eugeissona brachystachys 
Eugeissona insignis 
Eugeissona minor 
Eugeissona tristis 
Eugeissona utilisUseful Bertam Palm
Euterpe broadwayi 
Euterpe catinga var. catinga 
Euterpe catinga var. roraimae 
Euterpe edulisJuçara Palm
Euterpe longibracteata 
Euterpe luminosa 
Euterpe oleraceaAcai Palm
Euterpe precatoriaMountain Cabbage Palm
Euterpe precatoria var. longivaginata 
Gastrococos crispaCuban Belly Palm
Gaussia attenuataLlume Palm
Gaussia gomez-pompae 
Gaussia mayaMaya Palm
Gaussia princeps 
Gaussia spirituana 
Geonoma appuniana 
Geonoma arundinacea 
Geonoma aspidiifolia 
Geonoma atrovirens 
Geonoma baculifera 
Geonoma brenesii 
Geonoma brevispathaCana Preta
Geonoma brevispatha var. occidentalis 
Geonoma brongniartii 
Geonoma camana 
Geonoma chlamydostachys 
Geonoma chococola 
Geonoma concinna 
Geonoma congestaSuita Palm
Geonoma cuneata var. cuneata 
Geonoma cuneata var. procumbens 
Geonoma cuneata var. sodiroi 
Geonoma densa 
Geonoma deversa 
Geonoma divisa 
Geonoma epetiolata 
Geonoma ferruginea 
Geonoma gamiovaArecana Palm
Geonoma gastoniana 
Geonoma hoffmanniana 
Geonoma hugonis 
Geonoma interruptaChontilla
Geonoma interrupta var. euspatha 
Geonoma irena 
Geonoma jussieuana 
Geonoma laxiflora 
Geonoma leptospadix 
Geonoma linearis 
Geonoma longipedunculata 
Geonoma longivaginata 
Geonoma macrostachys var. acaulis 
Geonoma macrostachys var. macrostachys 
Geonoma macrostachys var. poiteauana 
Geonoma maxima var. ambigua 
Geonoma maxima var. chelidonura 
Geonoma maxima var. maxima 
Geonoma maxima var. spixiana 
Geonoma monospatha 
Geonoma mooreana 
Geonoma myriantha 
Geonoma oldemanii 
Geonoma oligoclona 
Geonoma orbignyana 
Geonoma paradoxa 
Geonoma paraguanensis 
Geonoma paucifloraOuricana Palm
Geonoma poeppigiana 
Geonoma pohliana 
Geonoma polyandra 
Geonoma polyneura 
Geonoma rubescens 
Geonoma santanderensis 
Geonoma schottianaGuarika Palm
Geonoma scoparia 
Geonoma seleri 
Geonoma simplicifrons 
Geonoma spinescens 
Geonoma stricta var. piscicauda 
Geonoma stricta var. stricta 
Geonoma stricta var. trailii 
Geonoma supracostata 
Geonoma talamancana 
Geonoma tenuissima 
Geonoma triandra 
Geonoma triglochin 
Geonoma trigona 
Geonoma umbraculiformis 
Geonoma undata 
Geonoma weberbaueri 
Geonoma wilsonii 
Guihaia argyrataGuilin Dwarf Palm
Guihaia grossifibrosaGuangxi Dwarf Palm
Hedyscepe canterburyanaUmbrella Palm
Hemithrinax compacta 
Hemithrinax rivularis var. rivularis 
Hemithrinax rivularis var. savannarum 
Heterospathe annectens 
Heterospathe arfakiana 
Heterospathe brevicaulis 
Heterospathe cagayanensis 
Heterospathe califrons 
Heterospathe clemensiae 
Heterospathe delicatula 
Heterospathe dransfieldii 
Heterospathe elataSagisi Palm
Heterospathe elata var. palauensis 
Heterospathe elegans 
Heterospathe elmeri 
Heterospathe glabra 
Heterospathe glauca 
Heterospathe humilis 
Heterospathe intermedia 
Heterospathe kajewskii 
Heterospathe ledermanniana 
Heterospathe lepidota 
Heterospathe macgregorii 
Heterospathe minorDwarf Sagisi palm
Heterospathe muelleriana 
Heterospathe negrosensis 
Heterospathe obriensis 
Heterospathe parviflora 
Heterospathe philippinensis 
Heterospathe phillipsii 
Heterospathe pilosa 
Heterospathe pulchra 
Heterospathe ramulosa 
Heterospathe salomonensis 
Heterospathe scitula 
Heterospathe sensisi 
Heterospathe sibuyanensis 
Heterospathe sphaerocarpa 
Heterospathe trispatha 
Heterospathe uniformis 
Heterospathe versteegiana 
Heterospathe woodfordianaSolomon Sagisi Palm
Howea belmoreanaCurly Palm
Howea forsterianaKentia Palm
Hydriastele affinis 
Hydriastele aprica 
Hydriastele beccariana 
Hydriastele beguinii 
Hydriastele brassii 
Hydriastele cariosa 
Hydriastele carrii 
Hydriastele chaunostachys 
Hydriastele costata 
Hydriastele cyclopensis 
Hydriastele cylindrocarpa 
Hydriastele dransfieldii 
Hydriastele flabellata 
Hydriastele geelvinkiana 
Hydriastele gibbsiana 
Hydriastele gracilis 
Hydriastele hombronii 
Hydriastele kasesa 
Hydriastele kjellbergii 
Hydriastele ledermanniana 
Hydriastele lepidota 
Hydriastele longispatha 
Hydriastele lurida 
Hydriastele macrospadix 
Hydriastele manusii 
Hydriastele mayrii 
Hydriastele micrantha 
Hydriastele microcarpa 
Hydriastele moluccana 
Hydriastele montana 
Hydriastele nannostachys 
Hydriastele oxypetala 
Hydriastele palauensis 
Hydriastele pinangoides 
Hydriastele pleurocarpa 
Hydriastele procera 
Hydriastele ramsayi 
Hydriastele rheophytica 
Hydriastele rhopalocarpa 
Hydriastele rostrata 
Hydriastele sarasinorum 
Hydriastele selebica 
Hydriastele valida 
Hydriastele variabilis 
Hydriastele vitiensis 
Hydriastele wendlandiana 
Hyophorbe amaricaulis 
Hyophorbe indica 
Hyophorbe lagenicaulisBottle Palm
Hyophorbe vaughanii 
Hyophorbe verschaffeltiiSpindle Palm
Hyospathe elegans 
Hyospathe frontinensis 
Hyospathe macrorhachis 
Hyospathe peruviana 
Hyphaene compressa 
Hyphaene coriaceaIlala Palm
Hyphaene dichotoma 
Hyphaene guineensis 
Hyphaene macrosperma 
Hyphaene petersianaVegetable Ivory Palm
Hyphaene reptans 
Hyphaene thebaicaDoum Palm
Iguanura ambigua 
Iguanura asli 
Iguanura belumensis 
Iguanura bicornis 
Iguanura borneensis 
Iguanura cemurung 
Iguanura chaiana 
Iguanura corniculata 
Iguanura curvata 
Iguanura diffusa 
Iguanura divergens 
Iguanura elegans 
Iguanura geonomiformis 
Iguanura humilis 
Iguanura kelantanensis 
Iguanura leucocarpa 
Iguanura macrostachya 
Iguanura melinauensis 
Iguanura minor 
Iguanura mirabilis 
Iguanura myochodoides 
Iguanura palmuncula var. magna 
Iguanura palmuncula var. palmuncula 
Iguanura parvula 
Iguanura perdana 
Iguanura piahensis 
Iguanura polymorpha 
Iguanura prolifera 
Iguanura remotiflora 
Iguanura sanderiana 
Iguanura speciosa 
Iguanura tenuis var. khaosokensis 
Iguanura tenuis var. tenuis 
Iguanura thalangensis 
Iguanura wallichiana var. major 
Iguanura wallichiana var. rosea 
Iguanura wallichiana var. wallichiana 
Iriartea deltoideaCopa Palm
Iriartella setigera 
Iriartella stenocarpa 
Itaya amicorum 
Johannesteijsmannia altifronsJoey
Johannesteijsmannia lanceolata 
Johannesteijsmannia magnificaSilver Joey
Johannesteijsmannia perakensis 
Juania australis 
Jubaea chilensisChilean Wine Palm
Jubaeopsis caffraPondoland Palm
Kentiopsis magnifica 
Kentiopsis oliviformis 
Kentiopsis piersoniorum 
Kentiopsis pyriformis 
Kerriodoxa elegansWhite Elephant Palm
Korthalsia angustifolia 
Korthalsia bejaudii 
Korthalsia brassii 
Korthalsia celebica 
Korthalsia cheb 
Korthalsia concolor 
Korthalsia debilis 
Korthalsia echinometra 
Korthalsia ferox 
Korthalsia flagellaris 
Korthalsia furcata 
Korthalsia furtadoana 
Korthalsia hispida 
Korthalsia jala 
Korthalsia junghuhnii 
Korthalsia laciniosa 
Korthalsia lanceolata 
Korthalsia merrillii 
Korthalsia paucijuga 
Korthalsia rigida 
Korthalsia robusta 
Korthalsia rogersii 
Korthalsia rostrata 
Korthalsia scaphigeroides 
Korthalsia scortechinii 
Korthalsia tenuissima 
Korthalsia zippelii 
Laccospadix australasicusAtherton Palm
Laccosperma acutiflorum 
Laccosperma korupensis 
Laccosperma laeve 
Laccosperma opacum 
Laccosperma robustum 
Laccosperma secundiflorum 
Latania loddigesiiBlue Latan Palm
Latania lontaroidesRed Latan Palm
Latania verschaffeltiiYellow Latan Palm
Lavoixia macrocarpa 
Lemurophoenix halleuxiiRed Lemur Palm
Leopoldinia major 
Leopoldinia piassabaChiqui-chiqui Palm
Leopoldinia pulchra 
Lepidocaryum tenue var. casiquiarense 
Lepidocaryum tenue var. gracile 
Lepidocaryum tenue var. tenue 
Lepidorrhachis mooreanaLittle Mountain Palm
Licuala acuminata 
Licuala acutifida 
Licuala ahlidurii 
Licuala angustiloba 
Licuala anomala 
Licuala arbuscula 
Licuala aruensis 
Licuala bacularia 
Licuala bayana 
Licuala beccariana 
Licuala bellatula 
Licuala bidentata 
Licuala bintulensis 
Licuala bissula 
Licuala borneensis 
Licuala bracteata 
Licuala brevicalyx 
Licuala cabalionii 
Licuala calciphila 
Licuala cameronensis 
Licuala celebica 
Licuala concinna 
Licuala cordata 
Licuala corneri 
Licuala crassiflora 
Licuala dasyantha 
Licuala debilis 
Licuala densiflora 
Licuala distans 
Licuala egregia 
Licuala elegans 
Licuala elegantissima 
Licuala fatua 
Licuala ferruginea 
Licuala ferruginoides 
Licuala flabellum 
Licuala flavida 
Licuala flexuosa 
Licuala fordiana 
Licuala fractiflexa 
Licuala furcata 
Licuala gjellerupii 
Licuala glaberrima 
Licuala glabra var. glabra 
Licuala glabra var. selangorensis 
Licuala gracilis 
Licuala grandiflora 
Licuala grandisRuffled Fan Palm
Licuala hallieriana 
Licuala hexasepala 
Licuala insignis 
Licuala kamarudinii 
Licuala kemamanensis 
Licuala khoonmengii 
Licuala kiahii 
Licuala kingiana 
Licuala klossii 
Licuala kunstleri 
Licuala lanata 
Licuala lanuginosa 
Licuala lauterbachiiBougainville Palm
Licuala leprosa 
Licuala leptocalyx 
Licuala linearis 
Licuala longicalycata 
Licuala longipes 
Licuala longispadix 
Licuala macrantha 
Licuala magna 
Licuala malajana var. humilis 
Licuala malajana var. malajana 
Licuala mattanensis 
Licuala mattanensis var. mapuMapu (Variagated form)
Licuala merguensis 
Licuala micholitzii 
Licuala micrantha 
Licuala mirabilis 
Licuala modesta 
Licuala montana 
Licuala moszkowskiana 
Licuala moyseyi 
Licuala mustapana 
Licuala nana 
Licuala naumoniensis 
Licuala nauroannii 
Licuala olivifera 
Licuala oliviformis 
Licuala oninensis 
Licuala orbicularisParasol Palm
Licuala pachycalyx 
Licuala pahangensis 
Licuala palas 
Licuala paludosaGolden Licuala
Licuala parviflora 
Licuala patens 
Licuala paucisecta 
Licuala peekelii 
Licuala peltata var. peltata 
Licuala peltata var. sumawongii 
Licuala penduliflora 
Licuala petiolulata 
Licuala platydactyla 
Licuala polyschista 
Licuala poonsakiiPoonsak's Fan Palm
Licuala pulchella 
Licuala pumila 
Licuala punctulata 
Licuala pusilla 
Licuala radula 
Licuala ramsayiAustralian Fan Palm
Licuala reptans 
Licuala ridleyana 
Licuala robinsoniana 
Licuala robusta 
Licuala rumphiiCelebes Fan Palm
Licuala ruthiae 
Licuala sallehana var. incisifolia 
Licuala sallehana var. sallehana 
Licuala sarawakensis 
Licuala scortechinii 
Licuala simplex 
Licuala spathellifera 
Licuala spectabilis 
Licuala spicata 
Licuala spinosaMangrove Fan Palm
Licuala steinii 
Licuala stongensis 
Licuala tanycola 
Licuala taynguyensis 
Licuala telifera 
Licuala tenuissima 
Licuala terengganuensis 
Licuala thoana 
Licuala tiomanensis 
Licuala tomentosa 
Licuala tonkinensis 
Licuala triphylla 
Licuala valida 
Licuala whitmorei 
Linospadix aequisegmentosa 
Linospadix albertisiana 
Linospadix apetiolata 
Linospadix canina 
Linospadix microcarya 
Linospadix microspadix 
Linospadix minorJakarungle
Linospadix monostachyosWalking Stick Palm
Linospadix palmerianaPalmers Walking Stick Palm
Livistona alfredii 
Livistona australisSouthern Fan Palm
Livistona benthamiiBentham's Fountain Palm
Livistona brevifolia 
Livistona carinensis 
Livistona chinensisChinese Fan Palm
Livistona chinensis var. boninensisBonin Islands fan palm
Livistona chinensis var. subglobosaTaiwan Fan Palm
Livistona chocolatina 
Livistona concinna 
Livistona decoraRibbon Fan Palm
Livistona drudei 
Livistona eastonii 
Livistona endauensis 
Livistona exigua 
Livistona fulva 
Livistona halongensis 
Livistona humilisAustralian Sand Palm
Livistona inermisWispy Fan Palm
Livistona jenkinsianaMajor Jenkin's palm
Livistona kimberleyana 
Livistona lanuginosaCape River Fan Palm
Livistona lorophylla 
Livistona mariae var. mariae 
Livistona merrillii 
Livistona muelleriAustralian Dwarf Fan Palm
Livistona nitidaCarnavon Palm
Livistona papuana 
Livistona rigidaMataranka palm
Livistona robinsoniana 
Livistona rotundifoliaFootstool Palm
Livistona saribusTaraw Palm
Livistona surru 
Livistona tahanensis 
Livistona tothur 
Livistona victoriae 
Livistona woodfordiiNggela Fountain Palm
Lodoicea maldivica 
Loxococcus rupicola 
Lytocaryum hoehneiHoehne
Lytocaryum weddellianumMiniature Coconut Palm
Manicaria sacciferaTroolie Palm
Marojejya darianiiBig Leaf Palm
Marojejya insignis 
Masoala konaKona Palm
Masoala madagascariensis 
Mauritia carana 
Mauritia flexuosaMorete Palm
Mauritiella aculeataRio Negro Palm
Mauritiella armataMoretillo Palm
Mauritiella macroclada 
Maxburretia furtadoana 
Maxburretia gracilis 
Maxburretia rupicola 
Medemia argunNubian Desert Palm
Metroxylon amicarum 
Metroxylon paulcoxii 
Metroxylon saguSago Palm
Metroxylon salomonenseSolomon Ivory Nut Palm
Metroxylon upoluense 
Metroxylon vitiense 
Metroxylon warburgiiVanuatu Sago Palm
Moratia cerifera 
Myrialepis paradoxa 
Nannorrhops ritchianaMazari Palm
Nannorrhops ritchiana sp. silverSilver Mazari Palm
Nenga banaensis 
Nenga gajah 
Nenga grandiflora 
Nenga macrocarpa 
Nenga pumila var. pachystachya 
Nenga pumila var. pumila 
Neonicholsonia watsonii 
Neoveitchia brunnea 
Neoveitchia storckii 
Nephrosperma van-houtteanum 
Normanbya normanbyiBlack Palm
Nypa fruticansNypa Palm
Oenocarpus bacabaBacaba Palm
Oenocarpus balickii 
Oenocarpus batauaBatauá Palm
Oenocarpus bataua var. oligocarpus 
Oenocarpus circumtextus 
Oenocarpus distichus 
Oenocarpus makeru 
Oenocarpus mapora 
Oenocarpus minor 
Oenocarpus simplex 
Oenocarpus × andersonii (O. bacaba × O. minor) 
Oncocalamus djodu 
Oncocalamus macrospathus 
Oncocalamus mannii 
Oncocalamus tuleyi 
Oncocalamus wrightianus 
Oncosperma fasciculatum 
Oncosperma gracilipes 
Oncosperma horridumMountain Nibung Palm
Oncosperma platyphyllum 
Oncosperma tigillarium 
Orania archboldiana 
Orania decipiens 
Orania disticha 
Orania gagavu 
Orania glauca 
Orania lauterbachiana 
Orania longisquamaSindro Palm
Orania macropetala 
Orania moluccana 
Orania oreophila 
Orania palindan 
Orania paraguanensis 
Orania parva 
Orania ravaka 
Orania regalis 
Orania rubiginosa 
Orania sylvicola 
Orania trispatha 
Oraniopsis appendiculataBronze Palm
Parajubaea cocoidesMountain Coconut
Parajubaea sunkhaZunca Palm
Parajubaea torallyi var. microcarpaBolivian Mountain Coconut
Parajubaea torallyi var. torallyiPasopaya Palm
Pelagodoxa henryana 
Phoenicophorium borsigianum 
Phoenix acaulisDwarf Date Palm
Phoenix andamanensis 
Phoenix atlantica 
Phoenix caespitosa 
Phoenix canariensisCanary Island Date Palm
Phoenix dactyliferaDate Palm
Phoenix dactylifera var. MedjoolMedjool Fruiting Date
Phoenix loureiroi var. loureiroiMountain Date Palm (Manipur form)
Phoenix loureiroi var. loureiroi sp. formosanaTaiwan Date Palm
Phoenix loureiroi var. pedunculata 
Phoenix paludosaMangrove Date Palm
Phoenix pusillaCeylon Date Palm
Phoenix reclinataSenegal Date Palm
Phoenix roebeleniiPygmy Date Palm
Phoenix rupicolaCliff Date Palm
Phoenix sylvestrisSilver Date Palm
Phoenix theophrastiCretan Date Palm
Pholidocarpus ihur 
Pholidocarpus kingianus 
Pholidocarpus macrocarpus 
Pholidocarpus majadum 
Pholidocarpus mucronatus 
Pholidocarpus sumatranus 
Pholidostachys dactyloidesCarmaná Palm
Pholidostachys kalbreyeri 
Pholidostachys pulchra 
Pholidostachys synanthera 
Physokentia avia 
Physokentia dennisii 
Physokentia insolita 
Physokentia petiolata 
Physokentia tete 
Physokentia thurstonii 
Physokentia whitmorei 
Phytelephas aequatorialisTagua Palm
Phytelephas macrocarpa 
Phytelephas schottiiIvory Palm
Phytelephas seemannii 
Phytelephas tenuicaulis 
Phytelephas tumacana 
Pigafetta elataBlack Wanga Palm
Pigafetta filarisWhite Wanga Palm
Pinanga acaulis 
Pinanga adangensis 
Pinanga albescens 
Pinanga andamanensis 
Pinanga angustisecta 
Pinanga annamensis 
Pinanga arinasae 
Pinanga aristata 
Pinanga arundinacea 
Pinanga auriculata var. auriculata 
Pinanga auriculata var. leucocarpa 
Pinanga auriculata var. merguensis 
Pinanga badia 
Pinanga basilanensis 
Pinanga batanensisBatan Palm
Pinanga baviensis 
Pinanga bicolana 
Pinanga borneensis 
Pinanga brevipes 
Pinanga caesia 
Pinanga capitataBumburing Palm
Pinanga capitata var. divaricata 
Pinanga celebica 
Pinanga chaiana 
Pinanga chinensis 
Pinanga cleistantha 
Pinanga copelandii 
Pinanga coronataIvory Cane Palm
Pinanga crassipes 
Pinanga cucullata 
Pinanga curranii 
Pinanga decora 
Pinanga densiflora 
Pinanga dicksonii 
Pinanga discolor 
Pinanga disticha 
Pinanga dumetosa 
Pinanga duperreana 
Pinanga egregia 
Pinanga forbesii 
Pinanga fractiflexa 
Pinanga furfuracea 
Pinanga geonomiformis 
Pinanga glauca 
Pinanga glaucescens 
Pinanga glaucifolia 
Pinanga globulifera 
Pinanga gracilisCoulombe Palm
Pinanga gracillima 
Pinanga grandijuga 
Pinanga grandis 
Pinanga griffithii 
Pinanga heterophylla 
Pinanga hexasticha 
Pinanga hookeriana 
Pinanga hymenospatha 
Pinanga inaequalis 
Pinanga insignis 
Pinanga isabelensis 
Pinanga jamariensis 
Pinanga javanaEmerald Palm
Pinanga johorensis 
Pinanga keahii 
Pinanga latisecta 
Pinanga lepidota 
Pinanga ligulata 
Pinanga limosa var. limosa 
Pinanga limosa var. montana 
Pinanga macroclada 
Pinanga macrospadix 
Pinanga maculata 
Pinanga malaiana 
Pinanga manii 
Pinanga megalocarpa 
Pinanga micholitzii 
Pinanga minor 
Pinanga minuta 
Pinanga mirabilis 
Pinanga modesta 
Pinanga mooreana 
Pinanga negrosensis 
Pinanga pachycarpa 
Pinanga pachyphylla 
Pinanga palustris 
Pinanga pantiensis 
Pinanga paradoxa var. paradoxa 
Pinanga paradoxa var. unicostata 
Pinanga parvula 
Pinanga patula 
Pinanga pectinata 
Pinanga perakensis 
Pinanga philippinensis 
Pinanga pilosa 
Pinanga polymorpha 
Pinanga porrecta 
Pinanga pulchella 
Pinanga purpurea 
Pinanga quadrijuga 
Pinanga ridleyana 
Pinanga rigida 
Pinanga riparia 
Pinanga rivularis 
Pinanga rumphiana 
Pinanga rupestris 
Pinanga salicifolia 
Pinanga samarana 
Pinanga sarmentosa 
Pinanga sclerophylla 
Pinanga scortechinii 
Pinanga sessilifolia 
Pinanga sibuyanensis 
Pinanga sierramadreana 
Pinanga simplicifrons var. pinnata 
Pinanga simplicifrons var. simplicifrons 
Pinanga singaporensis 
Pinanga sinii 
Pinanga sobolifera 
Pinanga speciosa 
Pinanga stricta 
Pinanga stylosa 
Pinanga subintegra var. beccariana 
Pinanga subintegra var. intermedia 
Pinanga subintegra var. multifida 
Pinanga subruminata 
Pinanga sylvestrisChocolate Cane Palm
Pinanga tashiroi 
Pinanga tenacinervis 
Pinanga tenella var. tenella 
Pinanga tenella var. tenuissima 
Pinanga tomentella 
Pinanga trichoneura 
Pinanga uncinata 
Pinanga urdanetensis 
Pinanga urosperma 
Pinanga variegata var. hallieriana 
Pinanga variegata var. variegata 
Pinanga veitchii 
Pinanga viridis 
Pinanga watanaiana 
Pinanga woodiana 
Pinanga yassinii 
Plectocomia assamica 
Plectocomia billitonensis 
Plectocomia bractealis 
Plectocomia dransfieldiana 
Plectocomia elmeri 
Plectocomia elongataGiant Rattan Palm
Plectocomia elongata var. philippinensis 
Plectocomia himalayanaHimalaya Rattan Palm
Plectocomia kerriana 
Plectocomia khasyana 
Plectocomia longistigma 
Plectocomia lorzingii 
Plectocomia macrostachya 
Plectocomia microstachys 
Plectocomia mulleri 
Plectocomia pierreana 
Plectocomia pygmaea 
Plectocomiopsis corneri 
Plectocomiopsis geminiflora 
Plectocomiopsis mira 
Plectocomiopsis triquetra 
Plectocomiopsis wrayi 
Podococcus barteri 
Pogonotium divaricatum 
Pogonotium moorei 
Pogonotium ursinum 
Polyandrococos caudescensBuri Palm
Ponapea hosinoiKattai Palm
Ponapea ledermanniana 
Ponapea palauensis 
Prestoea acuminataRed Crownshaft Palm
Prestoea acuminata var. dasystachys 
Prestoea acuminata var. montanaMountain Cabbage palm
Prestoea carderi 
Prestoea decurrens 
Prestoea ensiformis 
Prestoea longipetiolata var. cuatrecasasii 
Prestoea longipetiolata var. longipetiolata 
Prestoea longipetiolata var. roseospadix 
Prestoea pubens var. pubens 
Prestoea pubens var. semispicata 
Prestoea pubigera 
Prestoea schultzeanaMarsh Palm
Prestoea simplicifolia 
Prestoea tenuiramosa 
Pritchardia affinis 
Pritchardia arecina 
Pritchardia aylmer-robinsoniiWahane Palm
Pritchardia beccariana 
Pritchardia flynnii 
Pritchardia forbesiana 
Pritchardia glabrata 
Pritchardia hardyi 
Pritchardia hillebrandii 
Pritchardia kaalae 
Pritchardia lanaiensis 
Pritchardia lanigera 
Pritchardia limahuliensis 
Pritchardia lowreyana 
Pritchardia martii 
Pritchardia minor 
Pritchardia mitiaroana 
Pritchardia munroi 
Pritchardia napaliensis 
Pritchardia pacificaFiji Fan Palm
Pritchardia pericularum 
Pritchardia perlmanii 
Pritchardia remota 
Pritchardia schattaueri 
Pritchardia thurstoniiLau Fan Palm
Pritchardia viscosa 
Pritchardia vuylstekeana 
Pritchardia waialealeana 
Pritchardia woodfordianaNggela Fan Palm
Pritchardiopsis jeanneneyi 
Pseudophoenix ekmaniiDominican Cherry Palm
Pseudophoenix lediniana 
Pseudophoenix sargentiiCherry Palm
Pseudophoenix viniferaBuccaneer Palm
Ptychococcus lepidotus 
Ptychococcus paradoxus 
Ptychosperma ambiguum 
Ptychosperma bleeseriBleeser's Palm
Ptychosperma buabe 
Ptychosperma burretianum 
Ptychosperma caryotoides 
Ptychosperma cuneatum 
Ptychosperma elegansSolitaire Palm
Ptychosperma furcatum 
Ptychosperma gracile 
Ptychosperma hartmannii 
Ptychosperma lauterbachii 
Ptychosperma lineare 
Ptychosperma macarthuriiMacArthur Palm
Ptychosperma macrocerum 
Ptychosperma mambare 
Ptychosperma micranthum 
Ptychosperma microcarpum 
Ptychosperma mooreanum 
Ptychosperma nicolai 
Ptychosperma praemorsum 
Ptychosperma propinquumAru Palm
Ptychosperma pullenii 
Ptychosperma ramosissimum 
Ptychosperma rosselense 
Ptychosperma salomonense 
Ptychosperma sanderianum 
Ptychosperma schefferi 
Ptychosperma streimannii 
Ptychosperma tagulense 
Ptychosperma vestitum 
Ptychosperma waitianum 
Raphia africana 
Raphia australisKosi Palm
Raphia fariniferaRaffia Palm
Raphia gentiliana 
Raphia hookeriWest African Wine Palm
Raphia laurentii 
Raphia longiflora 
Raphia mambillensis 
Raphia mannii 
Raphia matombe 
Raphia monbuttorum var. monbuttorum 
Raphia monbuttorum var. mortehanii 
Raphia palma-pinus var. nodostachys 
Raphia palma-pinus var. palma-pinus 
Raphia regalis 
Raphia rostrata 
Raphia ruwenzoricaHighland Raffia Palm
Raphia sese 
Raphia sudanicaDwarf Raphia Palm
Raphia taedigeraYolillo Palm
Raphia textilis 
Raphia vinifera 
Ravenea albicansWhite Majesty Palm
Ravenea dransfieldii 
Ravenea glaucaSihara Palm
Ravenea hildebrandtiiDwarf Majesty Palm
Ravenea julietiae 
Ravenea krocianaKroc's Palm
Ravenea lakatraIronwood Palm
Ravenea latisecta 
Ravenea louvelii 
Ravenea madagascariensis 
Ravenea moorei 
Ravenea musicalisTorendriky Palm
Ravenea nana 
Ravenea rivularisMajesty Palm
Ravenea robustiorMonimony Palm
Ravenea sambiranensisSoindro Palm
Ravenea xerophilaAnivona Palm
Reinhardtia elegans 
Reinhardtia gracilisGiant Window Pane Palm
Reinhardtia gracilis var. gracilior 
Reinhardtia gracilis var. rostrata 
Reinhardtia gracilis var. tenuissima 
Reinhardtia koschnyana 
Reinhardtia latisectaGiant Window Pane Palm
Reinhardtia paiewonskianaGiant Window Pane Palm
Reinhardtia simplexDwarf Window Pane Palm
Retispatha dumetosa 
Rhapidophyllum hystrixNeedle Palm
Rhapis excelsaLady Palm
Rhapis gracilisDwarf Lady Palm
Rhapis humilisSlender Lady Palm
Rhapis laosensisLaos Lady Palm
Rhapis micrantha 
Rhapis multifidaFinger Palm
Rhapis robustaGuangxi Lady Palm
Rhapis subtilisThai Lady Palm
Rhopaloblaste augustaNicobar Majestic Palm
Rhopaloblaste ceramicaMajestic Palm
Rhopaloblaste elegansElegant Palm
Rhopaloblaste gideonii 
Rhopaloblaste ledermanniana 
Rhopaloblaste singaporensis 
Rhopalostylis baueriNorfolk Palm
Rhopalostylis sapidaNikau Palm
Roscheria melanochaetes 
Roystonea altissima 
Roystonea borinquenaPuerto Rican Royal Palm
Roystonea dunlapiana 
Roystonea lenis 
Roystonea maisiana 
Roystonea oleraceaVenezuelan Royal Palm
Roystonea princeps 
Roystonea regiaCuban Royal Palm
Roystonea stellata 
Roystonea violacea 
Sabal bermudanaBermuda Palmetto
Sabal causiarumPuerto Rican Hat Palm
Sabal domingensisHispaniola Palmetto
Sabal etoniaScrub palm
Sabal gretherae 
Sabal maritimaBull Thatch Palm
Sabal mauritiiformisBay Palmetto
Sabal mexicanaTexas Palmetto
Sabal miamiensis 
Sabal minorDwarf Palmetto
Sabal palmettoPalmetto Palm
Sabal pumosRoyal Palmetto
Sabal roseiLlanos Palmetto
Sabal uresanaSonora Palmetto
Sabal yapaThatch palm
Salacca affinis 
Salacca clemensiana 
Salacca dolicholepis 
Salacca dransfieldiana 
Salacca flabellata 
Salacca glabrescens 
Salacca graciliflora 
Salacca lophospatha 
Salacca magnifica 
Salacca minuta 
Salacca multiflora 
Salacca ramosiana 
Salacca rupicola 
Salacca sarawakensis 
Salacca secunda 
Salacca stolonifera 
Salacca sumatrana 
Salacca vermicularis 
Salacca wallichiana 
Salacca zalaccaSalak Palm
Satakentia liukiuensisSatake Palm
Satranala decussilvaeSatranabe Palm
Schippia concolorSilver Pimento Palm
Sclerosperma dubium 
Sclerosperma mannii 
Sclerosperma walkeri 
Serenoa repensSaw Palmetto
Serenoa repens - SilverSilver Saw Palmetto
Socratea exorrhizaCurly Stilt Root Palm
Socratea hecatonandra 
Socratea montana 
Socratea rostrata 
Socratea salazarii 
Solfia samoensis 
Sommieria leucophylla 
Syagrus amara 
Syagrus botryophoraPati Queen Palm
Syagrus campylospatha 
Syagrus cardenasiiCorocito Palm
Syagrus cearensis 
Syagrus cocoidesJatá Palm
Syagrus comosaBitter Palm
Syagrus coronataLicuri Palm
Syagrus duartei 
Syagrus flexuosaAcumã Palm
Syagrus glaucescens 
Syagrus graminifolia 
Syagrus harleyiFox Palm
Syagrus inajai 
Syagrus macrocarpaMaria Rosa Palm
Syagrus microphylla 
Syagrus oleraceaCatolé Palm
Syagrus orinocensis 
Syagrus petraea 
Syagrus picrophyllaLent Coconut
Syagrus pleioclada 
Syagrus pseudococosPiririma Coconut
Syagrus romanzoffianaQueen palm
Syagrus ruschianaRock Coconut
Syagrus sancona 
Syagrus schizophyllaArikury Palm
Syagrus smithii 
Syagrus stratincola 
Syagrus vagans 
Syagrus vermicularis 
Syagrus werdermannii 
Syagrus yungasensis 
Syagrus × campos-portoana (S. coronata × S. romanzoffiana) 
Syagrus × costae (S. coronata × S. oleracea) 
Syagrus × matafome (S. coronata × S. vagans) 
Syagrus × tostana (S. coronata × S. schizophylla) 
Synechanthus fibrosusMonkey Tail Palm
Synechanthus warscewiczianus 
Tahina spectabilisBlessed Palm
Tectiphiala ferox 
Thrinax ekmaniana 
Thrinax excelsaJamaican Thatch Palm
Thrinax morrisiiBrittle Thatch Palm
Thrinax parvifloraMountain Thatch Palm
Thrinax radiataFlorida Thatch Palm
Trachycarpus fortuneiChusan palm
Trachycarpus fortunei sp. wagnerianusMiniature Chusan palm
Trachycarpus geminisectusEight Peaks Fan Palm
Trachycarpus latisectusWindamere palm
Trachycarpus martianus 
Trachycarpus martianus sp. khasyanusMartius' windmill palm
Trachycarpus martianus sp. nepalensisMartius' windmill palm
Trachycarpus nanusDragonhead palm
Trachycarpus oreophilusThai Mountain Fan Palm
Trachycarpus princepsStone Gate Palm
Trachycarpus sp. manipurSaramati Palm
Trachycarpus sp. nanitalNanital Kumaon palm
Trachycarpus takilKumaon palm
Trithrinax brasiliensisBrazilian needle palm
Trithrinax campestrisCampestre palm
Trithrinax schizophyllaMosquito palm
Veillonia alba 
Veitchia arecinaMontgomery Palm
Veitchia filiferaYanawei Palm
Veitchia joannis 
Veitchia metiti 
Veitchia simulans 
Veitchia spiralisKajewskia Palm
Veitchia vitiensis 
Veitchia winin 
Verschaffeltia splendidaSeychelles Stilt Palm
Voanioala gerardiiForest Coconut
Wallichia caryotoides 
Wallichia chinensis 
Wallichia densifloraHimalayan dwarf fishtail palm
Wallichia distichaDistichous Fishtail Palm
Wallichia gracilis 
Wallichia marianneae 
Wallichia marianniae 
Wallichia mooreana 
Wallichia siamensisThai Dwarf Fishtail Palm
Wallichia triandra 
Washingtonia filiferaCotton palm
Washingtonia robustaSky-duster palm
Welfia regiaAmargo Palm
Wendlandiella gracilis var. gracilis 
Wendlandiella gracilis var. polyclada 
Wendlandiella gracilis var. simplicifrons 
Wettinia aequalis 
Wettinia aequatorialis 
Wettinia anomala 
Wettinia augusta 
Wettinia castanea 
Wettinia disticha 
Wettinia drudei 
Wettinia fascicularis 
Wettinia hirsuta 
Wettinia kalbreyeriMacana Palm
Wettinia lanata 
Wettinia longipetala 
Wettinia maynensis 
Wettinia microcarpa 
Wettinia minima 
Wettinia oxycarpa 
Wettinia panamensis 
Wettinia praemorsa 
Wettinia quinaria 
Wettinia radiata 
Wettinia verruculosa 
Wodyetia bifurcataFoxtail palm
Zombia antillarumZombi Palm

Blog Archive